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Zusammenfassung 

Rehe und Wildschweine gehören in Europa zu den häufigsten Kulturfolgern mit flä-

chendeckender Verbreitung. Sie gelten als wichtige Wirte für Zecken und scheinen 

eine bedeutende Rolle im Lebenszyklus von zeckenübertragenen Krankheiten zu 

spielen. Von August 2011 bis Februar 2014 wurden im Bienwald (Rheinland-Pfalz) 

247 Rehe und 344 Wildschweine auf ihren Zeckenbefall sowie auf bevorzugt befal-

lende Körperstellen und Infektionen untersucht. Zecken und Organproben wurden 

durch PCR auf Rickettsien- und Borrelienspezies analysiert. Von 83 sequenzierten 

Zecken wurde in 9 Rickettsia helvetica gefunden. Eine statistische Auswertung, ein-

schließlich Faktorenanalyse, Entscheidungsbäume, generalisierte lineare Modelle 

und logistische Regressionen, wurde verwendet, um die Schlüsselfaktoren bezüg-

lich Zeckenbefall, befallener Körperstellen und Infektionen zu identifizieren. Dabei 

wurde eine Vielzahl neuer Erkenntnisse gewonnen: Geschlecht, Alter und körperli-

cher Verfassung von Rehen beeinflusste den Befall mit Zecken deutlich. Der Befall 

auf Wildschweinen war erheblich niedriger als auf Rehen. Klimatische Faktoren kor-

relierten signifikant mit der Zeckenabundanz, wobei Zecken die Körperstelle zur 

Blutmahlzeit aktiv auswählten und ganzjährig aktiv waren. Weibliche adulte Zecken 

zeigten dabei die niedrigste Spezialisierung. Keine der Organproben zeigte eine Ri-

ckettsien- oder Borrelieninfektion. Zecken von Rehen waren zu 47% mit Rickettsia 

spp. und zu 3,4% mit B. burgdorferi s.l. infiziert, während von Wildschweinen 41,7% 

der Zecken mit Rickettsien und keine mit Borrelien infiziert waren. Infektionen mit 

Rickettsien wurden durch Jahreszeit, Saugstadium und Geschlecht der Zecken sowie 

durch Wirtszustand und -geschlecht signifikant beeinflusst. Die Borrelien abtötende 

Wirkung von Rehblut in gesaugten Zecken wurde bestätigt. Eine ähnliche Wirkung 

für Wildschweinblut wird vermutet. Die Studie zeigt, dass Rehe gegenüber Wild-

schweinen die bevorzugten Wirte für Ixodes ricinus sind und somit eine herausra-

gende Rolle für zeckenübertragene Krankheiten spielen. Dies ist weltweit die erste 

und umfangreichste Langzeitstudie von Zecken auf Rehen und Wildschweinen in ei-

nem gemeinsamen Habitat mit dem größten Datensatz.
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Abstract 

European wild boar and roe deer belong to the most common, synanthropic and 

widespread species of big game in Europe. They are potential key hosts for ticks and 

are hypothesized to play an important role in the life cycle of tick-borne diseases. 

From August 2011 to February 2014, 247 European roe deer and 344 wild boar 

were investigated for tick prevalence, abundance, preferred attachment sites and 

pathogen infections in a forest in southern Germany (the Bienwald, Rhineland-Pa-

latinate). Ticks and organ samples were analyzed by PCR for infections with Rickett-

sia spp. and B. burgdorferi s.l. species. 83 tick samples were sequenced finding Rick-

ettsia helvetica in 9 ticks. An extensive statistical evaluation, including factor analy-

sis, decision trees, generalized linear modelling and logistic regressions, was used 

to identify, rank and analyze the key factors related to tick burden, feeding site se-

lection and infections. The results included several novel findings. Host sex, age and 

condition influenced the tick burden on roe deer significantly. The infestation inten-

sity on wild boar was considerably lower than on roe deer. Climatic factors corre-

lated significantly with tick intensity, while ticks were active all-year and chose their 

feeding site actively preferring the abdomen, sternum and ear. Thereby, female ticks 

had the lowest feeding site specialization, which was lowest during the warmer 

months. None of the organ samples showed a Rickettsia or Borrelia infection. Ticks 

from roe deer were infected to 47.0% with Rickettsia spp. and to 3.4% with B. 

burgdorferi s.l. From wild boar 41.7% of the ticks had Rickettsia spp. and no Borrelia 

spp. were found. Rickettsia infections were significantly related with engorgement, 

the host’s physical condition, sampling period and the sex of the ticks and hosts. The 

borreliacidal effect of roe deer is confirmed and a similar effect is proposed for wild 

boar. The results indicate that roe deer play a more important role than wild boar in 

the distribution and ecology of Ixodes ricinus, as well as in the epidemiological lifecy-

cle of tick-borne diseases. This is the first and most comprehensive long-term study 

of ticks from roe deer and wild boar in a common habitat with the largest dataset 

currently available worldwide. 
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1  
Introduction 

1.1 Overview 

Worldwide, there is no other group of arthropods that transmits a greater variety of 

pathogens, including viruses, bacteria and protozoa, affecting humans, livestock and 

companion animals than ticks (Jongejan and Uilenberg 2004). In Europe, the sub-

stantial majority of vector-borne human diseases are transmitted by ticks with 

highly increasing incidence (Randolph 2001). The most prevalent pathogens are 

commonly transmitted to humans by the generalist ixodid tick Ixodes ricinus sensu 

stricto (Humair and Gern 1998). The increasing emergence of human diseases trans-

mitted by ticks of the I. ricinus (L.) complex (see Figure 1.1) appears to be occurring 

simultaneously with changes in their spatial distribution, abundance and their asso-

ciated pathogens (Pfäffle et al. 2013). However, evidence suggests that the current 

range expansion of ticks and the emergence of tick-borne diseases are also strongly 

correlated with changes in climate, human behavior and habitat modifications (e.g. 

habitat fragmentation) (Halos et al. 2010). Previous studies substantiate the im-

portance of the effects of potential tick and reservoir hosts on the epidemiological 

life cycle of tick-borne diseases and disease outbreaks (McCoy et al. 1999, Estrada-

Peña et al. 2006, Keesing et al. 2006). In particular, tick and pathogen prevalence is 

known to be strongly correlated with the presence and density of suitable host spe-

cies as well as with their ecology (Gray et al. 1999, Dautel et al. 2006, Durden 2006, 

Ogden et al. 2008, Gilbert 2010, Kiffner et al. 2011c, Petney et al. 2011). As ticks have 
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only a limited ability to move horizontally (McCoy et al. 1999, Miller et al. 2007, 

Petney et al. 2011), vertebrate species play not only an outstanding role for tick and 

pathogen persistence in a specific area, but their movement also disperses ticks to 

new areas with the potential for subsequent human disease emergence (Randolph 

2004, Estrada-Peña et al. 2006, Gilbert 2010, Pfäffle et al. 2013). 

Immature life history stages of ixodid ticks are predominantly associated with small 

mammal hosts (Krasnov et al. 2002, Hanincová et al. 2003), whereas big game spe-

cies appear to be potential key hosts favored by adult female ticks as they can pro-

vide large blood meals that encourage egg production (Smith et al. 1990, Pichon et 

al. 1999, Dobson et al. 2006, Ruiz-Fons et al. 2006, Gern 2008, Pound et al. 2010). In 

North America white-tailed deer (Odocoileus virginianus) are known to be a suitable 

and important big host species for Ixodes scapularis (Smith et al. 1990, Fish and 

Childs 2009), whereas in Europe red deer (Cervus elaphus) and roe deer (Capreolus 

capreolus) are usually heavily infested with I. ricinus, Dermacentor marginatus and, 

in southern Europe, Hyalomma marginatum ticks (Nelson et al. 2000, Fuller and Gill 

2001). Red deer are thought to play an important role in tick distribution over long 

distances as they show distinct migration behavior similar to white-tailed deer 

(Nelson et al. 2004), but they tend to avoid urbanized areas (see Figure 1.2) 

(Mysterud 1999, Vor et al. 2010).  

Figure 1.1: Female Ixodes ricinus in on a leaf in search for a host (left, Picture: Holger Krisp, 
Ulm), female tick attached to human skin (center, Picture: Gabor Pozsgai, www.photoga-
bor.com) and Rash (Erythema migrans) after tick bite (right, Picture: James Gathany, CDC). 
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Contrary to this, adult roe deer form groups during winter and tend to be territorial 

in spring and summer, which involves the dominant male chasing away subadult or 

subdominant individuals, providing the chance for ticks to be distributed. This spe-

cies occurs increasingly in urban and suburban habitats (Mysterud 1999, Vor et al. 

2010, Pfäffle et al. 2013). Furthermore, their area-wide distribution, synanthropic 

mode of life and social behavior make roe deer potentially a key species of major 

concern for tick research (Pichon et al. 1999, de la Fuente et al. 2004, Ruiz-Fons et 

al. 2006, Kiffner et al. 2010a), as the emergence of diseases largely depends on the 

contact between humans and pathogens (Hughes and Randolph 2001a, 2001b, 

Wilson et al. 2002, Skuballa et al. 2010). 

There are several studies that investigate tick burden on roe deer as well as the role 

of deer on the transmission of tick-borne diseases (Randolph 2001, 2009, Carpi et 

al. 2008, Kiffner et al. 2010a, 2011a, Vor et al. 2010, Vázquez et al. 2011, Alonso et 

al. 2012). Roe deer are reservoir hosts for several tick-borne pathogens (e.g. Ana-

plasma spp.) (Petrovec et al. 2003) and to play an important role with respect to the 

tick infection rate and the ecology of many pathogens (Kurtenbach et al. 1998b, Gern 

2008). Although they are known to be dilution hosts for Borrelia spp. (Richter et al. 

2004, Bhide et al. 2005) and other tick-borne pathogens (e.g. tick-borne encephalitis 

virus), their frequently high infestations with ticks also potentially makes them a 

platform for pathogen transmission via co-feeding (Jaenson and Tälleklint 1992, 

Figure 1.2: Syntrophic wild boar and roe deer. Adult female boar with its offspring on a Ber-
lin front door (left, Picture: Th. Wiehle/Berliner Forsten). Roe deer passing by an industrial 
estate (right, Picture: Timo Jann/Bergedorfer Zeitung). 
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Randolph et al. 1996, Ostfeld and Keesing 2000, Schmidt and Ostfeld 2001, Randolph 

2004, Bhide et al. 2005, Kiffner et al. 2010a).  

For cervids in general, a strong positive relationship between host population den-

sity and disease emergence was observed (Pichon et al. 1999, Randolph 2004, 

Brownstein et al. 2005, Fish and Childs 2009). As cervids serve demonstrably as am-

plifier hosts for ticks (Randolph 2004, Fish and Childs 2009), it is necessary to in-

vestigate their direct and indirect role in the ecological cycle of zoonoses and disease 

emergence. Besides host density, the composition of the species is considered to 

play an important role in disease emergence and risk of infection (Van Buskirk and 

Ostfeld 1995, Ostfeld and Keesing 2000, Schmidt and Ostfeld 2001, Keesing et al. 

2006). 

Similar to roe deer, wild boar (Sus scrofa) belong to the most common and wide-

spread big game species of Europe. Both species share the same habitats and can 

reach very high population densities locally (de la Fuente et al. 2004, Ruiz-Fons et 

al. 2006, Rizzoli et al. 2009, Kiffner et al. 2010a, Vor et al. 2010, Keuling et al. 2013). 

Furthermore, roe deer and wild boar also profit from human influence on the envi-

ronment (e.g. the change in land use, nutritional habitats and human life style) (de 

la Fuente et al. 2004, Ruiz-Fons et al. 2006, Keuling 2010a, Pfäffle et al. 2013). More-

over, wild boar show not only increasing population growth, a high spatial aggrega-

tion and overabundance (Gortázar et al. 2006, Keuling 2010b), but also enlarged 

home ranges which overlap substantially with highly urbanized areas (see Figure 

1.2) (Vor et al. 2010, Keuling 2013, Keuling et al. 2013, Léger et al. 2013). 

Although a variety of pathogens, such as piroplasms (e.g. Babesia spp. and Theileria 

spp.), Ehrlichia spp., Anaplasma spp. (i.e. A. phagocytophilum and A. marginale) and 

Rickettsia spp. (i.e. Rickettsia slovaca, Rickettsia raoultii and Rickettsia sp. DnS28), 

have been detected in ticks removed from wild boar (de la Fuente et al. 2004, Selmi 

et al. 2009, Michalik et al. 2012, Zanet et al. 2014), only little is known about the role 
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of these hosts in the epidemiological life cycle of tick-borne pathogens. Studies con-

ducted in Spain, the Czech Republic and Poland found that wild boar serve as hosts 

for A. phagocytophilum (Petrovec et al. 2003, de la Fuente et al. 2004, Smetanová et 

al. 2006, Pfäffle et al. 2013). Kurtenbach et al. (1998a) considered wild boar to be 

possibly reservoir competent, at a low level, for Borrelia burgdorferi sensu stricto 

(s.s.). A serological survey conducted in the Czech Republic detected antibodies to 

Borrelia burgdorferi sensu lato (s.l.) in wild boar sera and pointed out the possible 

importance of wild boar in Lyme borreliosis ecology (Juricová and Hubálek 2009). 

Thus, wild boar are also of substantial interest in the transmission of zoonotic dis-

eases.  

In summary, roe deer, and to a lesser extent wild boar, are known to be natural hosts 

for ixodid ticks (de la Fuente et al. 2004, Ruiz-Fons et al. 2006, Kiffner et al. 2010a, 

2010b), however, their role in tick-borne pathogen life cycle is not yet fully under-

stood. In Germany, the role of European wild boar for tick-borne pathogen dynamics 

is less well investigated than for cervids. As far as known, investigations regarding 

prevalences of ticks on wild boar and tick-borne pathogens have not been conducted 

in Germany. 

In terms of ticks sampled from roe deer and wild boar, my study is worldwide the 

most comprehensive study ever conducted to enlighten the role of both hosts for 

ticks and in the life cycle of tick-borne diseases. Insights from other studies gained 

in the US are not transferable to the situation in Europe. In particular in Germany, 

and particularly for wild boar, such studies are up to now completely missing, but 

essential for the understanding of the epidemiological life cycles of tick-borne dis-

eases. It is the only study that investigated ticks and both host species in a common 

habitat over a long term period with a continuous sample acquisition throughout 

the years with the aim to acquire generally valid data and to reveal seasonal dynam-

ics. In contrast to other studies (Kiffner et al. 2010a, Vor et al. 2010, Overzier 2013), 

I was the first to consider additional biotic parameters, such as host sex, age and 
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condition, tick engorgement and infestation with other parasites, as well as addi-

tional abiotic factors, in particular precipitation. 

Simultaneously to my work, additional long-term studies of ticks and tick-borne dis-

eases were conducted within the scope of the Bienwald project situated on the left 

bank of the Rhine (Moser 2012, Neumaier 2012, Schweikert 2012, Zöller 2014) and 

within the scope of the BWPLUS project on the right bank of the Upper Rhine near 

Karlsruhe (Petney et al. 2014, Sebastian et al. 2014, Pfäffle et al. 2015a, 2015b). 

These studies included drag sampling (“flagging”) of ticks from the vegetation, tick 

sampling from small mammals (e.g. the bank vole Myodes glareolus) and from sheep. 

Both projects were established to gain long-term information about ticks, hosts and 

pathogens from both banks of the River Rhine with the aim of comparison. The 

BWPLUS project did not include the monitoring of ticks from big game species (i.e. 

roe deer and wild boar). However, the main goal of the two projects is to gain a com-

plete set of information with respect ticks, host and pathogens in this area and to 

understand the differences between the left and right bank of the Rhine. 

1.2 Objectives 

The main aim of my work was to study concurrently roe deer and wild boar in con-

junction with their parasitizing ticks over 3 years within a common sampling area. 

In addition to their ticks, the organs of sympatric wild boar and roe deer were col-

lected and investigated for the B. burgdorferi s.l. and Rickettsia infections using PCR. 

A comprehensive statistical analysis was carried out in multiple steps in order to 

identify, rank and describe the key factors that influence tick prevalence, tick abun-

dance and preferred tick attachment sites on the host body, as well as the pathogen 

prevalence in the collected ticks. In this context, models were constructed to gain 

additional information on how the key factors affect tick burden and pathogen prev-

alence with respect to both host species. The physical condition of the host as well 

as climatic parameters were also considered during this evaluation. 
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In combination with the other studies of the Bienwald project and the BWPLUS pro-

ject, my work has the aim to gather, analyze and document the biotic and abiotic 

factors that influence ticks and tick-borne diseases. The information on these factors 

will allow us to analyze and thus understand changes in tick abundance and spatial 

distribution, as well as the occurrence of tick-borne diseases in humans. Such data 

are also crucial for the development of appropriate prevention and control strate-

gies. Thus, the goal of my work was to provide a detailed analysis of key factors for 

the environment-tick-host-pathogen interactions in the Bienwald. Since studies on 

roe deer and wild boar as hosts for ticks have not been conducted within the 

BWPLUS project, my results, and in particular my generated models, can serve as a 

reference for future studies on these two host species, allowing a comparison of 

studies on the left and right bank of the River Rhine. 

1.3 Outline 

This thesis is structured as follows. Chapter 2 will give an overview on the current 

state of research in relation to European big game, ticks and their transmitted path-

ogens as well as the corresponding tick-borne diseases. This chapter will in particu-

lar discuss the ecology of roe deer, wild boar and ticks of the family Ixodidae. In 

Chapter 3 the material and methods will be explained, including a description of the 

sampling approach, the microbiological methods and the statistical evaluation tech-

niques. Chapter 4 will present the results with respect to tick burden, including 

prevalences, abundances and the preferred feeding sites of ticks on roe deer and 

wild boar, followed by a discussion of the observations made. Chapter 5 takes a de-

tailed look on the pathogen distribution in ticks from roe deer and wild boar with 

respect to Rickettsia spp. and Borrelia spp., whereby a discussion of these results 

completes the chapter. Finally, in Chapter 6 conclusions will be drawn from the re-

sults and perspectives on future work will be given. 
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2  
Related work 

2.1 European big game 

Game represents a generic term for all wild living animals, which are subject to hunt-

ing rights. Based on biology, game laws and the practical aspects of hunting, a com-

mon classification of wildlife differentiates between furred game and feathered 

game, as well as between small and big game. The class of furred game comprises all 

mammalian species that are subject to hunting rights, while feathered game includes 

all hunted bird species. The category of hoofed game contains hunted cervids, bovids 

and wild boar. All hoofed game belong to the class of big game animals, as for exam-

ple roe deer and wild boar. All other game species are assigned to the category of 

small game. 

2.1.1 European roe deer 

European roe deer (Capreolus capreolus), also known as western roe deer, belongs 

to the furred big game category and to the class of hoofed game, the so-called ungu-

lates. Taxonomically, European roe deer belong to the suborder of ruminants (Ru-

minantia) within the order of even-toed ungulates (Artidodactyla). Within the fam-

ily of Cervidae, roe deer fall within the subfamily of Capreolinae (Andersen et al. 

1998). In addition to the European roe deer (Sempéré et al. 1996) , another roe deer 

species can be found in Asia, Siberia, Mongolia and China, the Siberian roe deer, also 

called eastern roe deer (Capreolus pygargus) (Ohtaishi and Gao 1990, Danilkin 

1995). Capreolus capreolus has a smaller body size, a smaller cranium and smaller 
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antlers than C. pygargus. Two other roe deer subspecies are known: (1) the Tian 

Shan roe deer (Capreolus c. tienschanicus) inhabiting Chinese and Russian parts of 

the Tian Shan Mountains in central, and (2) a species only found in Spain, Capreolus 

c. garganta. However, for both species only very limited data is available and it is 

still unclear how to define the exact boundaries between C. pygargus and Capreolus 

c. tienschanicus in Asia and between C. capreolus and Capreolus c. garganta in Europe 

(Stubbe 2008). Indeed, the taxonomic status of Capreolus c. garganta is even still 

under discussion, as to whether it can be considered as a separate subspecies or just 

as an ecotype of the European roe deer (Stubbe 2008). 

2.1.1.1 Morphology 

In Germany, C. capreolus is the smallest native deer species. Its body length can vary 

between 95 and 135 cm and its shoulder height lies between 65 and 75 cm 

(Macdonald and Barrett 2002). A pronounced sexual dimorphism in relation to its 

body size cannot be determined. Adult animals have a live weight of up to 49 kg with 

a relatively narrow, stocky body and high, slender legs (Andersen et al. 1998). The 

hoofs are short and narrow with well-developed lateral hoofs (Andersen et al. 

1998). Typical for roe deer is its cream white rump patch with a very short tail that 

is barely visible (2 to 3 cm). They have a short and slender neck with a triangular-

shaped head. Roe deer have a yellowish-red to reddish-brown coat with shorter and 

thinner hair during summer, and a grey brown (even black) coat in winter. The face 

always has a greyish color (Apelt 2007, Maahs 2010). Only adult males carry antlers, 

which are relatively erect and short in comparison to larger deer species (e.g. red 

deer). The younger males usually have unbranched, short antlers (5 to 12 cm), 

whereas older bucks can carry antlers up to 25 cm with two, three or rarely even 

four prongs depending on their physical condition (Andersen et al. 1998). When the 

antlers start to grow they are covered in a velvet-like layer of fur that disappears 

over time. Roe deer are usually classified into three groups: (1) fawns (up to one 

year), (2) yearling bucks and does (about one year) and (3) adult animals. Disem-

boweled, an adult animal has a body mass of about 14 to 21 kg, while a one-year-old 

animal weights about 12 to 16 kg. Roe deer fawns are born from May to June with a 
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weight of 1 to 2 kg, but can reach a body mass of up to 13 kg. They are initially pale 

to dark brown with white spots on the top of their torso.  

2.1.1.2 Distribution 

Roe deer inhabit large parts of Europe and some areas of eastern Asia. They are not 

found in the northernmost regions of Scandinavia and have a scattered distribution 

in the Mediterranean region, where they are confined to mountainous areas due to 

climatic factors. Roe deer are wide spread in England and Scotland, whereas they do 

not inhabit Ireland (Figures 2.1 and 2.2). On most other European islands, such as 

Iceland and the Mediterranean islands, roe deer are also absent (Andersen et al. 

1998, Stubbe 2008). Within Germany, C. capreolus is the most abundant deer species 

and is found from the coastal regions to the highlands, from floodplains to mountain 

forests, in agricultural steppe and parkland (Stubbe 2008). 

Figure 2.1: Geographical distribution of the roe deer throughout Europe. The boundary be-
tween European roe deer (C. capreolus) and Siberian roe deer (C. pygargus) is marked by 
the dotted line. The map is adapted from Heptner et al. (1966). 
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Roe deer are considered to be very adaptable and their distribution is still expanding 

(Andersen et al. 1998). Through the widespread extinction of many predators, such 

as wolf and lynx, the European roe deer has almost no natural enemies (Linnell et 

al. 1995). However, the species has become more and more exposed to hazards of 

machines used during hay and grass harvesting, as well as to road traffic and wild 

Figure 2.2: Geographical distribution of the Siberian roe deer throughout Asia. The map is 
adapted from Heptner et al. (1966). 
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dogs (Deutscher Jagdverband 2014a). Nevertheless, there is a growing roe deer pop-

ulation in Germany, such that from 1993/1994 to 2012/2013 an increase in the 

number of culled roe deer from 1.032.821 to 1.192.583 was registered (Deutscher 

Jagdverband 2014b). 

2.1.1.3 Habitat structure 

Roe deer occupy a wide variety of habitats with optimal living conditions being 

found in the transition zone between open land and woodland that is rich in under-

growth. They prefer landscapes which are marked by the alternation of light forests, 

fields and meadows and thus can be considered as a forest edge dwellers (Hewison 

et al. 2001). Only high mountainous regions over the tree line, as well as wide open 

grasslands, are rarely inhabited by roe deer (Andersen et al. 1998). However, as a 

synanthropic species, roe deer have adapted to open farmlands, human settlements, 

as well as to park-like landscapes (Wölfel 2005, Stubbe 2008). As forest edges are 

good browsing habitats for roe deer, spatial heterogeneity has been determined to 

be a key factor that influences local population density (Saïd and Servanty 2005). In 

heterogeneous landscapes, habitat usage is constrained by potential sources of dis-

turbance (i.e. human activities), such that roe deer tend to avoid buildings and roads 

(Kuehn et al. 2007, Coulon et al. 2008). In this context, Bonnot et al. (2014) have 

proposed the existence of a risk management syndrome which imposes constraints 

on how roe deer exploits high-risk habitats. 

An additional important factor for roe deer habitat quality is the availability of shel-

ter to escape from potential predators, including humans (Andersen et al. 1998, 

Bonnot et al. 2014). Due to their relatively small size, small forest remnants or 

hedges suffice as a shelter. Accordingly, roe deer also occupy the open agricultural 

plains. Consequently, a distinction is made between two ecotypes: forest roe deer 

and field roe deer (Jepsen and Topping 2004). While forest roe deer remain close to 

forest habitats, field roe deer resides in poorly sheltered open agricultural land-

scapes. Here they have switched to a diet mainly of crops. Field roe deer return to 

the forest and change their diet and behavior when the deer population density in 
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these areas decreases (Stubbe 2008). However, roe deer home ranges always in-

cluded a minimum amount of woodland independent of the ecotype (Cargnelutti et 

al. 2002). Hewison et al. (2001) found that switch between forest and field behavior 

may involve woodland connectivity. Nevertheless, the behavioral plasticity of roe 

deer in response to landscape structure limits our ability to accurately predict the 

effects of landscape and landscape change (Jepsen and Topping 2004, Bonnot et al. 

2014). 

Furthermore, the species is quite resistant to climactic extremes, such that it can 

survive in the hot and dry regions of southern Europe (Aragón et al. 2006), as well 

as in the cold boreal forests of Scandinavia (Andersen et al. 1998). However, high 

and long-lasting snow is unfavorable for roe deer since they have difficulty moving 

and reaching food. Additionally, other deer species seem to influence the behavior 

of roe deer. In areas with high abundances of red deer and fallow deer, smaller roe 

deer population density has been observed (Stubbe 2008). 

2.1.1.4 Feeding habits 

With regard to their nutritional behavior, roe deer belong to the class of concentrate 

selectors and shows a remarkable range of digestive adaptations (Andersen et al. 

1998). In comparison to the two other feeding types, the grass/roughage eaters (GR) 

and the intermediate (IM) types , the gastrointestinal tract of roe deer has a lower 

capacity, less subdivisions and larger openings (Van Soest 1994, Wölfel 2005). This 

leads to faster passage rates, such that a fiber-rich diet can only be poorly utilized. 

The low capacity requires roe deer to have several periods of feeding, which are dis-

tributed relatively evenly over 24 hours. Because of this, roe deer need nutritiously 

and easily digestible food (Stubbe 2008, Petrak 2013). Consequently, and in contrast 

to red deer which are IM feeders, roe deer is picky and its diet includes buds, herbs, 

flowers, young leaves and grasses. During fall roe deer also increasingly consumes 

berries, fruit, mushrooms, chestnuts, acorns, beechnuts as well as raspberries, rasp-

berry leaves and lichens (Andersen et al. 1998, Stubbe 2008, Deutz et al. 2009). 
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In addition to a daily rhythm of food intake, roe deer have a yearly rhythm with re-

gard to their energy demand. From October to December they have an increased 

need for food, which again reduces from mid-December to mid-February. Parallel to 

this development, a regression of the villi in the rumen can be registered (Deutz et 

al. 2009), and it also appears that roe deer are able to lower their basal metabolic 

rate during winter (Mauget et al. 1997, Andersen et al. 1998, Morellet et al. 2013). 

In the following months, until around June, the need for food is again increased, 

causing roe deer, particularly the bucks, to form body reserves of fat. The seasonal 

fluctuations in body mass are mainly caused through the change from summer to 

winter fur, differing food supply throughout the year, weather conditions and ex-

traordinary burdens, such as the rut, pregnancy and lactation. Bucks reach their 

maximal body mass in June or July before the rutting season, while leading does 

show a reduction of their body mass during these months due to milk production 

(Deutz et al. 2009). 

2.1.1.5 Home range and social behavior 

Roe deer are considered to be extremely faithful to their immediate environment 

(Linnell and Andersen 1995). However, this assumption cannot be seen as strictly 

established, since the environment of roe deer includes a large variety of ecological 

parameters, such as population density, sex ratio, browsing range and shelter, dis-

turbances (e.g. by humans) and climatic influences, the form of forestry and agricul-

ture, as well as the presence or absence of predators (David 2012), the visibility and 

the food supply in the home range (Tufto et al. 1996). In principle, roe deer occupy 

differing summer and winter grazing areas within their annual cycle. These areas 

include day and night ranges, resting and feeding places, as well as breeding zones 

for does and territorial blocks of adult bucks (Stubbe 2008). Thereby, roe deer gen-

erally live as loners, but they gather together in fluid social communities during the 

winter months until spring (Andersen et al. 1998, Stubbe 2008). The size of the 

groups can vary considerably with population density and habitat structure, such 

that winter groups can contain more than 50 individuals in open agricultural plains 

and between 5 and 10 in woodlands (Andersen et al. 1995, 1998). During summer, 
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females live isolated from other individuals in order to raise their fawns, while adult 

males defend their mating territory (Andersen et al. 1998). 

Recent findings show that territorial behavior seems to be dependent on multiple 

factors (David 2012). The size of the territory of a roe deer buck in wooded areas or 

structured field-forest districts is rarely more than 25 ha, in general they are much 

smaller (David 2012). However, the bucks do not show territorial behavior over the 

course of the entire year, but seem to abandon their territoriality after the rut due 

to hormonal changes (Stubbe 2008, David 2012). The synanthropic roe deer is very 

adaptable in its ranging behavior, such that the home range can become totally var-

iable depending on the situation within the roe deer population (David 2012). Thus, 

older bucks often live non-territorially, but nonetheless remain in their original ac-

tion space and even continue to participate in the rut. Despite this change in behav-

ior, they are tolerated and not attacked by other roe deer bucks in the region. It is 

assumed that bucks know each other and that the younger ones respect the elders 

(David 2012). Moreover, field roe deer that permanently live in the open country, 

can give up their territorial behavior partially or entirely (David 2012). Food avail-

ability, local weather and components of seasonality (e.g. day length) are key factors 

that influence roe deer forage and ranging behavior (Morellet et al. 2013). 

The behavior of female roe deer is quite different from that of the males (Tufto et al. 

1996). Although they are faithful to their habitat, they seem to principally show no 

territorial behavior. David (2012) ascribes this behavior to the energy costs that ter-

ritoriality requires, and that during breeding season female roe deer must pay at-

tention to their energy budget being unable to waste unnecessary power. Moreover, 

there exist observations in which females reside almost immediately next to each 

other. At the same time, the females only roughly know the resting place of their 

offspring, since the fawns choose it for themselves and change their location inde-

pendently from their mother by up to 100 m (Stubbe 2008). In forest areas with a 

high population density roe deer often live within very small areas and are orga-

nized in relational clans. Thereby, orphan fawns within such groups can be adopted 
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relatively easily by older sisters and aunts. All these behaviors indicate a non-terri-

toriality of female roe deer (David 2012). Conversely, the setting and home ranges 

of female roe deer seem to overlap without the occurrence of serious conflicts 

(David 2012). 

The reproductive cycle of roe deer has a unique status among ungulates. Females 

have only a single ovulation each year and the implantation of the embryo is delayed 

by five months (Andersen et al. 1998). The timing of this cycle is so precise that 98% 

of the females are fertilized during the rut, whereby 80% of the matings occur within 

two weeks. As a consequence, fawns are born aggregated closely in time during 

spring (Andersen et al. 1998, Wölfel 2005). 

2.1.1.6 Parasites 

Besides ticks (see Section 2.2), other ectoparasites have been recorded on roe deer 

(Duscher, 2006; Stubbe, 2008). For example, several findings of deer ked (Lipoptena 

cervi) have been reported (Välimäki et al. 2010, Handeland et al. 2013) and it has 

been proposed that deer support the reproduction of this parasite (Duscher 2006, 

Välimäki et al. 2010). In a Spanish study (Vázquez et al. 2011), roe deer were also 

infested by Hippoboscidae (Hippobosca, 3.3% and Lipoptena, 0.3%) and by Mal-

lophaga (Trichodectes meyer, 3.1%). In the eastern Mediterranean findings of three 

hippoboscid flies (Lipoptena capreoli, Hippobosca equina, and Hippobosca longipen-

nis) and one unidentified trombiculid mite species have been documented for roe 

deer reintroduced to Israel, while no exotic ectoparasites were collected (Wallach 

et al. 2008).  

Furthermore, infestations by nasal and pharyngeal bot flies of the family Oestridae 

(e.g. Cephenemyia stimulator, Cephenemyia ulrichii and Pharyngomyia picta) have 

been described in several studies (Sugár 1974, Rivosecchi et al. 1978, Ruiz et al. 

1993, Nilssen et al. 2008, Salaba et al. 2013). C. stimulator is the most common bot 

fly in roe deer with prevalence ranging from 11% up to 90% (Kusak et al. 2012). Roe 
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deer heavily infested with bot fly suffer severely having difficulty breathing, cough-

ing and frequently sneezing. The infestation can be lethal, mostly in combination 

with other parasites (e.g. lungworms) (Duscher 2006, Stubbe 2008). In addition, 

warble flies (Hypoderma) occur regionally on roe deer. Severe infestations (100 to 

200 larvae) with Hypoderma diana cause intense itching and scratching leading to 

skin abrasions, delayed hair change, dullness and weight loss (Yeruham et al. 1994, 

Duscher 2006). Deaths from H. diana alone are rare (Minar 1982), but in combina-

tion with stress and a poor physical condition high mortality rates (41%) have been 

observed in roe deer imported to Israel (Yeruham et al. 1994). Symptoms similar to 

those of H. diana are caused by the blood-feeding roe deer louse (Solenopotes capre-

oli) leading to a general state of restlessness in its hosts (Stubbe 2008). Moreover, 

several cases of sarcoptic mange caused by Sarcoptes scabiei mites have been re-

ported for European roe deer (Duscher 2006, Menzano et al. 2008, Oleaga et al. 

2008a, 2008b). This type of mite infestation causes skin inflammation, pruritus, and 

cutaneous hypersensitivity leading to physiological alterations in skin and organs, 

dehydration and occasionally to death (Oleaga et al. 2008b). 

As endoparasites in roe deer, protozoa (unicellular) and metazoan (multicellular) 

have been reported. Protozoa, such as coccidia (e.g. Eimeria capreoli, E. panda, E. 

ponderosa, E. rotunda and E. superba) and sarcosporidia (e.g. Sarcocystis gracilis and 

Sarcocystis capreolicanis) infesting the intestinal tract, toxoplasmosis in the muscles 

as well as blood parasites (e.g. Babesia capreoli) and trichomonads, have been found 

in many studies in Germany (Rehbein et al. 2000). Trichomonad infections in female 

roe deer can cause fertility disorders (Rehbein et al. 2000). The group of endopara-

sitic metazoans includes helminths, pentastomids (i.e. tongue worms) and arthro-

pods. For arthropods only the larval stages of H. diana and C. stimulator live endo-

parasitic in roe deer (Rehbein et al. 2000). Larvae of the pentastomid Linguatula 

serrata has been found in a liver of a roe deer in Bavaria (Rehbein et al. 2000). The 

helminth fauna of roe deer comprises liver flukes (e.g. Fasciola hepatica, Fascioloides 

magna, Dicrocoelium dendriticum), flat worms (e.g. Paramphistomum cervi), tape-
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worms (e.g. Moniezia expansa, Taenia cervi) and lungworms (e.g. Dictyocaulus cap-

reoli and Varestrongylus capreoli). In this context, Duscher (2006) and Stubbe 

(2008) provide a description of the symptoms and the consequences of an infesta-

tion for roe deer hosts.  

The infestation rates of a study in Poland (Burlinski et al. 2011) showed gastroin-

testinal nematodes to be most frequent in roe deer (34.7%) followed by coccidia 

(13.1%). The most frequently observed roundworm in roe deer was Chabertia sp. 

(13.8%), while high counts of Ostertagia sp. eggs (11.6%) and Trichostrongylus sp. 

eggs (10.69%) were also reported in fecal samples. In other Polish studies (Drozdz 

et al. 1987, 1992, Drozdz and Dudzinski 1993) the rate of infestation with gastroin-

testinal nematodes were even higher (50 to 100%). In western Pomerania, the prev-

alence of gastrointestinal nematodes in roe deer was 84% (Cisek et al. 2004), while 

the overall observed parasite infection rate was 95.5% (Cisek et al. 2003). Czech 

studies described endoparasite infestation rates of 88% (Dyk and Chroust 1974) 

and 100% (Vetýška 1980). In the both studies the most frequent endoparasite spe-

cies in roe deer was Ostertagia leptospicularis (88% and 83.9%, respectively). For 

four different Czech regions high infection rates in roe deer were also reported for 

Capreocaulus capreoli (78.4%), Chabertia ovina (77%), Eimeria ponderosa (60%), 

Eimeria superba (50%), Haemonchus contortus (100%), Muflonagia podjapolskyi 

(62.7%), Ostertagia lasensis (74%), Ostertagia ostertagi (57.4%), Spiculopteragia 

böhmi (55%), Spiculopteragia spiculoptera (57.4%) and Trichocephalus ovis (61.7%) 

(Vetýška 1980). Belarusian researchers (Shimalov and Shimalov 2003) also re-

ported very high infestation rates (75%) of helminth species in roe deer, whereby 

C. ovina being the most frequent (50%) followed by Trichuris ovis (37.5%) and Oe-

sophagostomum venulosum (31.3%). In Croatia, Kusak et al. (2012) also found that 

C. ovina (36%) was the most common parasite in roe deer followed by Ostertagia sp. 

(24%), Trichostrongylus sp. (20%) and Haemonchus contortus (16%). In Sweden, 

Aguirre et al. (1999) reported V. capreoli (30%), Trichostrongylus axei (25%) and 

Dictyocaulus noerneri (24%) as the most frequent endoparasites in roe deer. A study 
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from North Rhine-Westphalia (Rehbein et al. 2000) showed that 100% of the sam-

pled roe deer were infested with gastrointestinal nematodes and 32.8% with lung 

worms (D. eckerti: 14.1% and V. capreoli: 29.7%), while liver flukes and flat worms 

were not found. The most frequently found nematode species were Ostertagia lep-

tospicularis (95.3%), Spiculopteragia böhmi (87.5%), Skrjabinagia kolchida (85.9%), 

Trichuris globulosa (67.2%), Trichostrongylus capricola (60.9%) and Oesophagosto-

mum venulosum (50%). Zaffaroni et al. (2000) determined the degree of specializa-

tion of endoparasites and found that particularly H. contortus and T. axei are most 

adaptable to different hosts and thus appear to be most important due to their po-

tential pathogenic effects. 

In addition, Aguirre et al. (1999) showed for roe deer collected from Sweden that 

parasitism was one of the most common (11%) causes of mortality. Rehbein et al. 

(2000) found out that stronger roe deer were significantly less intensely infested 

than weaker host individuals. Helminth abundance in roe deer was negatively cor-

related with physical host parameters, such as body length (Zaffaroni et al. 1997) 

and body mass (Segonds-Pichon et al. 1998, Body et al. 2011), and nutritional com-

ponents, such as fat reserves (Rossi et al. 1997, Zaffaroni et al. 1997). In a Spanish 

study, the number of gastrointestinal worms was negatively correlated with faecal 

nitrogen and spleen mass, while landscape structure did not influence worm infes-

tation intensity directly, but possibly indirectly, since open areas could provide a 

diet richer in nitrogen (Navarro-Gonzalez et al. 2010). Consequently, Navarro-

Gonzalez et al. (2010) proposed that the risk of gastrointestinal nematode parasit-

ism for roe deer might depend on access to high-quality food, enhancing immuno-

competence. 

Furthermore, for gastrointestinal nematodes in roe deer the infestation prevalence 

depends on the host density (Gortázar et al. 2006, Body et al. 2011) and human dis-

turbance and restriction in roe deer home ranges has led to increased infestation 

intensity (Lutz and Kierdorf 1997). In an experimental roe deer population, 

Maublanc et al. (2009) have shown that very high host population densities can lead 
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to a rapid transfer of parasites between host animals causing significantly increased 

parasite loads and a high degree of stress that contributes to immunodepression. All 

of these factors can provoke demographic crashes, even before food becomes a lim-

iting factor (Maublanc et al. 2009). In addition, Body et al. (2011) found strong age 

and sex-dependent patterns of parasitism, such that roe deer yearlings were less 

often infested and had lower fecal egg counts than fawns and adult individuals. Male 

roe were also more heavily infested than females. They also reported that T. capri-

cola in roe deer was not affected by weather, whereas gastrointestinal strongylides 

were less frequent after dry summers (Body et al. 2011). 

2.1.2 Central European wild boar 

All wild boar (Sus scrofa) are members of the class of mammals (Mammalia) in the 

order of even-toed ungulates (Artiodactyla) and belong to the suborder of non-ru-

minants (Nonruminantia, also known as Suiformes). In addition to the infraorder of 

pig-like animals (Suina) there exists the family of Hippopotamidae to which hippos 

belong. Pig-like animals can be subdivided basically into two families: pigs native to 

the Old World (Suidae) and New World pigs (Tayassuidae). While New World pigs 

are divided into two genera (Catagonus and Tayassus), six genera are attributed to 

the family of Old World pigs: pig-deer (Babyrousa), giant forest hog (Hylochoerus), 

warthog (Phacochoerus), pygmy hog (Porcula), river pig (Potamochoerus) and pig 

(Sus). The pygmy hog, formerly named Sus salvanius, was recently placed into the 

monotypic genus Porcula (Funk et al. 2007). The genus Sus comprises 9 species, in-

cluding for example the bearded pig (Sus barbatus), the Celebes warty pig (Sus cele-

bensis), the Javan warty pig (Sus verrucosus) and wild boar (Sus scrofa). This species 

is further split up into more than 15 subspecies (exact number still controversial) 

including the domestic pig (Sus s. domesticus) and the Central European wild boar 

(Sus s. scrofa), which is the only wild representative of non-ruminant even-toed un-

gulates in Europe (Briedermann 2009, Kusza et al. 2014). Wild boar belongs to the 

class of hoofed game (Weindl 2014). Throughout this thesis the term “wild boar” 

and the species name Sus scrofa will be used to refer to the Central European wild 

boar (Sus s. scrofa). 
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2.1.2.1 Morphology 

The Central European wild boar has a compact, massive and stocky body structure 

with short legs and marked withers. The animals have a strong, relatively long and 

wedge-shaped skull that almost seamlessly passes over into the barrel-shaped 

trunk. Adult males, also called tuskers, have a height at the withers of 80 to 100 cm 

and their disemboweled body mass lies between 100 and 200 kg. The snout-vent 

length of tuskers has a mean value between 150 and 160 cm, but can reach up to 

180 cm. Adult females have a lower withers, a weigh disemboweled between 80 and 

100 kg and their average snout-vent length is about 140 cm with a range up to 

160 cm. The body mass of European wild boar varies greatly and depends heavily 

on the food supply, while its average value increases from east to west 

(Briedermann 2009). The subspecies has long bristles with a thick undercoat, 

whereby its overall appearance can vary from a brownish grey to grayish black color 

with a lighter underbelly. The bristles form a ridge along the back of the animals 

beginning between their relatively small ears. Their tail is unobtrusive, goes down 

as low as the ankles and ends in a bush of hair. Adult wild boar have striking and 

powerful canine teeth that are much more prominent in males and are used as a tool 

for breaking up the soil and as a weapon. The approximate age of an adult individual 

can be determined on the basis of its canines. From a hunter’s point of view, wild 

boar are referred to differently depending on their age (Briedermann 2009): 

squeaker (0 to 12 months), juvenile (12 to 24 months), adult boar (2 to 5 years), old 

boar (6 year and above). The age-dependent differentiation of young wild boar can 

be very difficult, because size and nutritional status can vary substantially. However, 

for young wild boar (< 2 years) a classification can be made on the basis of the dental 

age (Stubbe 2001, Briedermann 2009). 

2.1.2.2 Distribution 

Wild boar are widespread over most of Europe and Asia, as well as the northern 

parts of Africa (Meynhardt 1989, Hennig 2007). It occurs in Great Britain, while in 

Sweden a new stock has emerged in recent years originating from wild boars that 

had escaped from game enclosures (Hennig 2007, Rosvold and Andersen 2008). 
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Wild boar is also found in South and Central America, Cuba, the Galapagos Islands, 

as well as in Australia and New Zealand, as well as in some regions of the United 

States, e.g. parts of California, Florida, South Carolina and Georgia, Hawaii and 

Puerto Rico (Hennig 2007). The species distribution also reaches the Far East, in-

cluding Japan and Taiwan (see Figure 2.3) (Schley and Roper 2003). 

Central European wild boar (Sus s. scrofa) inhabit West and Central Europe includ-

ing France. In the south, its distribution is bounded by the Pyrenees and the Alps, 

while in Russia it can be found across to about the 25th meridian east. On the British 

Isles and in Scandinavia it was extinct, but a partial reintroduction has taken place 

(Hennig 2007, Briedermann 2009, Barrios-Garcia and Ballari 2012). The distribu-

tion of European wild boar in Germany extends over all federal states. In Mecklen-

burg-Western Pomerania, Brandenburg and Saxony-Anhalt, but also in certain areas 

of other federal states, such as the Eifel or the Hunsrueck, boars are particularly nu-

merous (Gethöffer 2005, Anczikowski 2009, Keuling 2010a). Germany and other 

Central European countries show a massive increases in the total number of culled 

wild boars, illustrating the extreme population growth over the past several decades 

Figure 2.3: Worldwide geographical distribution of wild boar (Sus scrofa). Its native range 
is demarked in black, its introduced range in gray, islands where S. scrofa have been intro-
duced are marked by gray circles and areas with an unknown distribution are demarked by 
a question mark. Map from Barrios-Garcia and Ballari (2012). 
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(Schley et al. 1998, Schley and Roper 2003, Arnold 2008, Barrios-Garcia and Ballari 

2012). Since the 1980s there has been an exponential growth in the wild boar har-

vest (Arnold 2008) with an increase from 339,232 culled wild boar during 1993/94 

to 644,239 during 2012/13 (Deutscher Jagdverband 2014c). Von Rüden (2006) has 

shown that since the 1980s a six-fold increase has taken place in Germany, in par-

ticular in the federal state of Rhineland-Palatinate. 

2.1.2.3 Habitat structure 

The occurrence of wild boar depends on a multitude of factors, such as climate, food 

supply, and safety (Briedermann 2009). Wild boar are highly adaptable to different 

habitats and there are few conditions that are completely unsuitable for them 

(Keuling 2010a, 2013). However, mixed hardwood forests can be considered as 

their preferred habitat, since the fruit of the oak and the beech (i.e. the mast) is their 

main food (Meynhardt 1989, Hennig 2007, Briedermann 2009). Another factor, 

which is essential for the survival of wild boar, is the presence of swampy areas and 

pools, which mainly serve the body care. The sensory organs of wild boar are 

adapted to undergrowth and scrub land. This allows them to be active at night and 

to colonize habitats other than forests. For example, reeds have been a natural hab-

itat of wild boar for a long time (Keuling 2013). Today, wild boar have spread in-

creasingly across agricultural landscapes because many fields provide shelter 

throughout the year. As obligate omnivores, wild boar use grassland close to shel-

ters in their search for food (especially earthworms and insect larvae) (Keuling 

2013). 

The distribution of wild boar stretches from areas with cold winters to warmer ar-

eas, whereby investigations in Norway (Rosvold and Andersen 2008) suggest that 

the establishment of Sus scrofa is mainly limited by food availability and not by cli-

mate, although the climate might by a limiting factor through its effect on the food 

supply. Briedermann (2009) also points out that the habitat choice of wild boar is 

strongly influenced by food supply. Moreover, shelter, water and rest areas are im-

portant habitat criteria. In Switzerland wild boar occur on high mountain pastures 
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with an altitude above 2000 m (Anczikowski 2009). In summary, wild boar can be 

found in forest, swamp and well-structured field landscapes, as well as areas with 

water and reeds, whereby their preferred habitats are deciduous and mixed forests 

with high proportions of oak and beech, meadows and marshy areas (Briedermann 

2009). 

2.1.2.4 Feeding habits 

Wild boar are omnivorous consuming both plant and animal food, which is reflected 

in their teeth pattern and by their digestive organs (Briedermann 2009). The major 

part of their recorded food is plant material (93%), while only approximately 6% of 

their diet consists of animal material (Anczikowski 2009). The nutritional compo-

nents of wild boar can basically be summarized into four groups (Meynhardt 1989). 

The first group comprises underground, plant-based food, such as roots, tubers and 

onions. To get this food, wild boar plough through the ground using their stable 

wedge-like head, their large canine teeth and their strong neck muscles (Hennig 

2007). Social groups of wild boar, referred to as “sounders” (see Section 2.1.2.6), are 

able to plow up to several acres of forest or agricultural land within a very short 

time, causing great damage, particularly to cultivated areas. Green parts of plants 

such as different clover, grass and herbaceous species belong to the second nutri-

tional group, which forms a large part of the overall food intake and is required to 

fulfill their essential needs of vitamin A (Hennig 2007, Briedermann 2009). Fruits 

and berries belong to the third group. This group includes two main components, 

acorns and beechnuts, which have a high nutritional value. Many field crops, includ-

ing corn, peas, beans and potatoes, are also very popular, causing considerable 

losses to farmers. In addition, windfall and wild fruit belong to the third nutritional 

group. Corn has a special significance, since it is used as bait for hide hunting as well 

as to distract boars away from cultivated fields. Animal food forms the fourth group, 

which serves a source of the high vitamin B12 demands of wild boar. Insects (par-

ticularly pupae and larvae), earthworms, reptiles, small rodents, young game ani-

mals, but also clutches of ground breeding birds and carrion are preferred animal 
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food components. Due to the diversity of the ingested food, wild boar are very flexi-

ble having the ability to almost completely change their diet to adapt to the food 

supply available, thus optimizing their energy resources. The extraordinary adapta-

bility of wild boar is one of the main reasons for its wide geographical distribution 

(Briedermann 2009). 

2.1.2.5 Home range 

Wild boar have limited territorial behavior. Sounders as well as individual tuskers 

have a more or less defined home range (Hennig 2007), such that their general space 

usage has been described as recurring and faithful to a habitat (Keuling 2013). Im-

portant places within those ranges are several sleeping places, fixed wallows, as well 

as permanent or temporary fixed feeding places that are connected by regularly fol-

lowed paths (Keuling et al. 2009, Keuling 2010a). Furthermore, dunging areas are 

important within the home range (Meynhardt 1989), as the marking of territories is 

olfactory as well as visual in the form of marked trees. Adult males put markings on 

trees using their canines and their saliva foam has an additional marking effect dur-

ing the mating season (Briedermann 2009). However, the precise home range bor-

ders are not particularly marked (Briedermann 2009). The places used within the 

territories must meet certain requirements. For example, the sleeping-place has to 

be safe and be adapted to the respective climatic influences, whereby the duration 

of its use also depends on the food supply and the size of the home range 

(Briedermann 2009). The excretory areas are located close to resting and sleeping 

areas, and if possible also close to a wet area which must contain enough mud and 

clay for exhaustive wallowing. This behavior serves for body care, assists with ther-

moregulation on warm days and provides protection from insects and parasites 

(Barrios-Garcia and Ballari 2012). 

According to the descriptions of Meynhardt (1989), Stubbe et al. (1989) and 

Briedermann (2009) significant correlations between the size of the home ranges 

and factors such as habitat quality and structure, food supply and shelter or resting 

areas exist. Consequently, the action space of wild boar is highly variable and can 
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differ from region to region. Other aspects influencing the home range of sounders 

are the prevailing population structure in terms of its age composition and the ex-

perience of the leading adult female, who plays an essential role in territorial behav-

ior (Sodeikat and Pohlmeyer 2003). Investigations using marked wild boar have 

shown that sounders under favorable conditions inhabit a home range of 500 to 

1000 ha (Stubbe et al. 1989, Keuling and Stier 2009a). More recent telemetry studies 

came to a similar conclusion, but partially showed home ranges even larger than 

1000 ha (Sodeikat and Pohlmeyer 2003, Keuling et al. 2008a, 2009, Keuling and Stier 

2009a). In areas dominated by woodland, the home range is usually larger, with an 

approximate average of 800 ha, than in agricultural landscapes where an average 

size of about 500 ha can be assumed (Keuling and Stier 2009a, 2009b, Keuling et al. 

2009, Keuling 2010a, 2013). Fears have been expressed that sounders are driven 

apart during hunts and that this could possibly lead to large wild boar migrations 

supporting the spread of wildlife diseases (von Rüden 2006). However, investiga-

tions showed that sounders under the influence of hunts do not exceeded the limits 

of their home ranges and that shortly after the hunts they can be found around the 

center of their main home range (Sodeikat and Pohlmeyer 2003). However, an im-

portant prerequisite for small escape distances and permanent home ranges of 

hunted sounders is that the social structure with a leading female wild boar remains 

intact during the hunt (Sodeikat and Pohlmeyer 2003). 

Within their home range, sounders show territorial behavior which is lost once the 

leading adult female is killed. In this case, the lead of the sounder can be taken over 

by sub-adult or adult individuals, which possess less experience causing an in-

creased and partially uncontrolled group activity that sometimes leads to the loss of 

the territory (Sodeikat and Pohlmeyer 2003). Moreover, a significant difference in 

the home range sizes of male and female wild boar has been described by several 

studies (Genov and Ferrari 1998, Keuling and Stier 2009a). Females are more faith-

ful to their habitat than males, which could be explained through the reclusive life-

style of tuskers (Anczikowski 2009). When the population density increases exces-

sively juvenile male boars often travel vast distances until they find an appropriate 
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home range, because they are expelled by older males during the mating season 

(Briedermann 2009). Older adult wild boar often use the same sleeping-place over 

several months, which speaks for a relatively small home range (Hennig 2007). 

However, there have been observations that individual animals sometimes travel 

very long distances that can reach up to 250 km (Meynhardt 1989). The territories 

of sounders can overlap at certain places, such as at fields or mast-providing forests, 

as well as at wallows or game passes. In general, these common places will be shared 

peacefully, although literature considers a minimum distance between sounders 

that lies below 50 m as a cause for potential conflicts (Briedermann 2009). 

2.1.2.6 Social behavior 

Normally, wild boar are predominantly diurnal animals, but increasing disturb-

ances, for example, human sport and recreational activities, as well as the increasing 

pressure through hunting, have forced them to become active at twilight and during 

the night (Weindl 2014). Thereby, wild boar are very social living animals. Only 

older males live alone most of the time, while all other individuals live in a family 

association, which consists of adult females and their offspring. Only closely related 

individuals form a sounder, while strangers are not, or only on rare occasions, ac-

cepted (Meynhardt 1989, Hennig 2007, Briedermann 2009). Both olfactory and 

acoustic signals are used for communication among the members of the sounder 

(Hennig 2007). There is also a strict hierarchy, which is usually maternally headed 

by a single adult female (Briedermann 2009). This order synchronizes all daily ac-

tivities within the sounder, such as, for example, the search for food and resting 

places, as well as the time of ovulation of female members (Happ 2012). Only new-

borns are initially excluded from the hierarchy, with an integration beginning when 

they are about 3 to 4 months old (Meynhardt 1989). At an age from seven to thirteen 

months the juvenile pigs must compete in hierarchic encounters to fix their ranking. 

After this process, male juveniles basically hold the lowest ranks and are cast out of 

the family at the age of about 18 months (Meynhardt 1989). Often, they form their 

own sounders for a short time, until they finally split and live as solitary animals 
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(Weindl 2014). However, they return to the sounder for a limited time for the pur-

pose of mating. The loner life of male wild boar protects the genetic diversity and 

inhibits inbreeding within the sounder (Anczikowski 2009). 

The size of a sounder depends on season, food supply, population density and 

growth (Briedermann 2009). Consequently, there are small sounders from 2 to 4 

wild boar, moderate ones with up to 15 individuals and large sounders with a max-

imum size of 30 to 40 animals. However, sounders split up once they reach a size of 

more than about 30 animals (Meynhardt 1989). Additionally, changes in the social 

association or in the hierarchy can lead to a division of the sounder. Such changes 

occur, for example, at the death of the leading female through hunting or disease. 

Under good environmental conditions and through good development, young boar 

can become sexually mature at an age of six months. Thus, they can already partici-

pate in their first year of life in reproduction and have their own offspring at an age 

of 13 to 14 months (Gethöffer 2005). This phenomenon can increase the number of 

wild boar dramatically leading to so-called rejuvenation of the population 

(Anczikowski 2009). Moreover, the leading female wild boar is unable suppress the 

heat of subordinate females or to synchronize the heat of the whole wild boar pop-

ulation. Therefore, the birth of squeakers at unusual times is caused by early-matur-

ing juvenile females that come into heat at unusual times (Keuling 2013).  

The mating season of wild boar occurs primarily in the months of November, De-

cember and January (Meynhardt 1989). Although (Briedermann 2009) observed 

longer mating periods, from October to May, the fertilization rate was highest during 

the winter months. The gestation period varies between 112 and 120 days and is 

equivalent to that of the domestic pig (S. scrofa domesticus) (Stubbe and Stubbe 

1977, Heck and Raschke 1980, Meynhardt 1989). Similar to the variation in the mat-

ing season, the cubbing season shows a wide timeframe from November to August, 

with a core timespan between March and April (Briedermann 2009). Investigations 

have revealed that on average 80 to 100% of the juvenile and adult females take part 

in reproduction, while only 35% of the females younger 1 than year participate 
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(Stubbe and Stubbe 1977, Briedermann 2009). However, recent studies indicate the 

important role of younger females (< 1 year) for population growth (Bieber and Ruf 

2002, Gethöffer 2005). The number of squeakers born per female varies between 1 

and 10, whereby the litters of young females are always smaller than those of older 

ones (Meynhardt 1989). The ecological lifespan of wild boar lies between 8 and 10 

years. Nevertheless, the average life expectancy is 18 to 25 months, which is due to 

the very high mortality during the first 2 years of life (Briedermann 2009). Because 

of their high adaptability and intelligence, the lack of predators and abundant food 

supply, wild boar have the highest rate of reproduction of our domestic game ani-

mals, with a prenatal growth rate of 260% minus a postnatal mortality rate of 15% 

leading to an average population increase of about 220% each year (Keuling 2013). 

The impact that these large numbers have on the animal community structure and 

on ecosystem function have been recently reviewed by Barrios-Garcia and Ballari 

(2012). 

2.1.2.7 Parasites 

In addition to tick infestations (see Section 2.2.3), a large variety of other ectopara-

sites have been reported on wild boar (Briedermann 2009). Haematopinus apri lice, 

which occur specifically on wild hogs, do not infest domestic pigs. They are distrib-

uted worldwide. However, the average prevalence varies regionally from 90% in 

Asia to under 10% in Central Europe (Kadulski 1974, Briedermann 2009, Fois et al. 

2012). It is assumed that the lice predominantly infest sick boar, as well as young 

individuals that have a thinner skin in comparison to older individuals (Brütt 1955, 

Briedermann 2009). The clinical symptoms caused by H. apri are restlessness and 

skin injuries. The louse Haematopinus suis was found on wild boar in Corsica with 

the highest prevalence in spring (50%) followed by summer (18%) and autumn 

(14%). 

A further ectoparasite found on wild boar, and on pigs in general, is the strongly 

host-specific mite Sarcoptes suis (Briedermann 2009) which causes sarcoptic 
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mange. This species also has a worldwide distribution and has been reported to oc-

cur in several other wild animal species (e.g. red deer, roe deer) in Central Europe 

(Pence and Ueckermann 2002). Reports of sarcoptic mange in wild boar mainly 

come from game enclosures (Duscher 2006, Briedermann 2009). Usually sarcoptic 

mange starts with a strong skin irritation and itching, then produces lesions with 

exudates that dry to crusts. It can lead to emaciation in serious cases (Briedermann 

2009). 

Endoparasitic infestations of wild boar are common and include protozoa (e.g. Tox-

oplasma gondii, Sarcocystis suicanis, S. suihominis, Eimeria debliecki, E. sabra and E. 

polita), trematodes (e.g. Fasciola hepatica, Dicrocoelium dentriticum, Agamodisto-

mum suis), tapeworms (e.g. larval Taenia hydatigena, Taenia solium L.) and nema-

todes (e.g. Ascaris suum, Ascarops strongylina, Physocephalus sexalatus, Globocepha-

lus spp., Metastrongylus spp., Trichuris suis, Trichinella spp.). Duscher (2006) and 

Briedermann (2009) have described the life cycles and clinical symptoms caused by 

these endoparasites. The first finding of the tapeworm Echinococcus granulosus in 

wild boar was made only quite recently in Romania with 45.5% of the worms iden-

tified as G1 and 39.4% as G7 genotypes (Onac et al. 2013). In a single boar from 

Switzerland the larvae of Echinococcus multilocularis was identified (Stephan et al. 

2001). The infestation of wild boar with Trichinella spp. is monitored across Ger-

many, since these parasites can cause a dangerous trichinellosis in humans who con-

sume raw meat (Nöckler et al. 2006). Between 1991 and 2004 more than 3.7 million 

wild boar were analyzed for Trichinella spp. in Germany showing a mean infestation 

rate of 0.005% (Remde 2008). Although this prevalence seems to be relatively low, 

Nöckler et al. (2006) detected more than 900 Trichinella larvae per gram in the dia-

phragm of a single boar confirming that wild boar are a possible source of infection 

for humans. 

The intestinal worm Globocephalus urosubulatus was found in wild boar in Corsica 

(Foata et al. 2006) with a prevalence between 30% and 70%, as well as in the Iran 

with a mean infestation rate of 74% (Eslami and Farsad-Hamdi 1992). The study 
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from Corsica also showed that adult G. urosubulatus were predominantly found dur-

ing spring, while Ascaris suum was more frequent in winter (Foata et al. 2006). G. 

urosubulatus was significantly more frequent in wild boar older than one year (43% 

vs. 15%), whereas Metastrongylus sp. showed significantly higher infection rates in 

younger hosts (94% vs. 6%) (Foata et al. 2006). In Iran, in addition to G. urosubula-

tus, wild boar was also infested with A. suum, but at a low prevalence (5%), while 

gastrointestinal nematodes (e.g. Ascarops strongylina, 56% and Physocephalus sexa-

latus, 56%), lungworms (Metastrongylus spp., 14-16%) and the liver fluke Dicro-

coelium dentriticum (21%) showed higher infection rates (Eslami and Farsad-Hamdi 

1992). A study from Estonia reported that lung nematodes were the predominant 

helminths discovered in wild boar with a prevalence of 82%, whereby a significant 

negative correlation between wild boar body mass and the number of lungworms 

was determined (Järvis et al. 2007). Ascarops strongylina (87%) and Metastrongylus 

spp. (85%) were the most common helminths in Spain, whereby for the latter spe-

cies the infection rate was greatest in wild boar younger than one year (de-la-Muela 

et al. 2001). In southwestern Spain, lung nematodes had a prevalence of 41.1%, with 

Metastrongylus apri (71.4%) also being the most frequent (García-González et al. 

2013). Thereby, the infestation intensity and the prevalence were also higher in 

young wild boar, as well as in areas of higher altitude and with higher precipitation. 

A sex-biased lungworm parasitism was not detected (García-González et al. 2013). 

Similarly, studies in Germany showed that Metastrongylus spp. were most frequent 

(100%), followed by gastrointestinal nematodes (e.g. G. urosubulatus, 95.6% and 

Physocephalus sexalatus, 73.3%) (Walburga 1989, Barutzki and Richter 1990, Epe 

and Spellmeyer 1997). In contrast, in France, the prevalence of stomach nematodes 

(97%) was slightly higher than that of lung nematodes (92%), although a signifi-

cantly higher nematode intensity was reported for young wild boar, similar to the 

Spanish studies (Humbert and Henry 1989). The development of parasites in the 

lungs and in gastrointestinal tract can be one of the main causes for increased mor-

tality rates of young wild boar (Jezierski 1977). 
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2.2 Ticks (Ixodida) 

2.2.1 Taxonomy 

Ticks belong to the class of Arachnida and form together with mites, the subclass of 

Acari. Ticks are ectoparasites living on the surface of the host. They belong to the 

order of Anactinotrichidea (Parasitiformes) and can be subdivided into 3 families 

(Oliver 1989, de la Fuente and Kocan 2006) which constitute the suborder Ixodida 

(Metastigmata): the Ixodidae (hard ticks), Argasidae (soft ticks) and Nuttalliellidae 

(see Figure 2.4). The family of Nuttalliellidae comprises only a single species, Nut-

talliella namaqua, which so far has only been found in southern Africa in the areas 

from Tanzania to Namibia and in South Africa (Horak 2009, Sonenshine and Roe 

2013a). This tick shares many features with the Ixodidae (e.g. anteriorly extending 

mouthparts and a dorsal shield) and the Argasidae (e.g. overall body structure). A 

recent study (Mans et al. 2011) has described N. namaqua as the closest living rela-

tive to the ancestral tick lineage. They indicate that it forms the evolutionary missing 

link between the other two tick families. The family of soft ticks includes approxi-

mately 5 genera (this is an area of some confusion) and approximately 190 species. 

Figure 2.4: Tree visualizing the taxonomy of ticks (Ixodida) including the 3 families, all gen-
era and the corresponding number of species in accordance with Guglielmone et al. (2010). 
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In contrast to soft ticks, the family of hard ticks contains 14 genera with approxi-

mately 700 species/subspecies and thus forms the largest of the 3 families 

(Guglielmone et al. 2013). Hard ticks are distinguished from soft ticks by the pres-

ence of a scutum, i.e. a hard shield. They comprise two sections: the Prostriata and 

Metastriata. The section Prostriata includes only the genus Ixodes, the members of 

which possess an anal groove that extends anterior to the anus, in contrast to other 

ixodid ticks when the groove lies posteriorly (Petney et al. 2012). The section 

Metastriata comprises all other ixodid tick genera (Nava et al. 2009). The tree in 

Figure 2.4 summarizes the taxonomy and shows the number of tick species belong-

ing to each genus (Guglielmone et al. 2010).  

2.2.2 Distribution 

Ticks have adapted to all kinds of ecosystems, including tropical rainforests, wet 

grassy landscapes, deserts and oceanic islands. They are found from both polar ar-

eas, through the temperate zones into the tropics (Dautel and Kahl 1999, Barker and 

Murrell 2004, Dautel 2010). The distribution of ticks depends on both biotic and 

abiotic factors (Dautel 2010). Ticks react very sensitively to climatic changes: low 

temperatures inhibit their development from egg to larva, while a certain amount of 

humidity is required for them to molt successfully to the next life history stage. 

Moreover, there exist both minimum and maximum temperatures that are lethal for 

ticks and which influence their distribution (Dautel 2010). Consequently, three fun-

damental requirements are essential for an ecosystem to support ticks: (1) a tem-

perature not lethal to ticks, (2) a high enough relative humidity allowing ticks to stay 

hydrated and (3) a host population density that is high enough. 

In Germany 17 tick species have been described (Liebisch and Rahman 1976, Petney 

et al. 2011), whereby most of the species belong to the family of Ixodidae occurring 

within 5 genera: Ixodes, Dermacentor, Haemaphysalis, Hyalomma and Rhipicephalus 

(Petney et al. 2011, Rubel et al. 2014). A recent map of georeferenced tick findings 

recorded by Rubel et al. (2014) in Germany is shown by Figure 2.5. Ticks are 
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occasionally imported from other countries, e.g. the brown dog tick, Rhipicephalus 

sanguineus, which occurs on dogs and comes from the Mediterranean into Germany 

(Rubel et al. 2014). However, as far as we know, these ticks are not able to survive 

Figure 2.5: Map of georeferenced locations at which hard ticks were found in Germany (from 
Rubel et al. 2014). 
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the cold temperate winters of Central Europe (Kimmig et al. 2010). In addition, ticks 

can be transported by migrating birds between different areas (Elfving et al. 2010, 

Plokarz 2010). 

2.2.3 Ecology 

Ticks feed on blood of vertebrates (Walter and Proctor 2013). While soft ticks take 

several relatively small blood meals over a short period of time (minutes to hours), 

hard ticks only feed once per life history stage (larva, nymph and adult adults: males 

of the genus Ixodes do not require a blood meal before mating) taking in a large 

amount of blood over several days. Most of the hard ticks are heteroxenous ticks and 

therefore need blood meals from different hosts to complete their developmental 

cycle (Wilson 1994). During each feeding ticks can deliver pathogens to and receive 

them from the hosts. Within the blood sucking arthropods, ticks transmit the largest 

variety of pathogens, including viruses, bacteria and protozoa (Aspöck 2008). 

Crucial for the active host selection process of ticks is the ambient temperature. Like 

other arthropods, ticks have developed various mechanisms to adapt to daily and 

seasonal temperature fluctuations (Dautel 2010). This is in particular true with re-

spect to phases of dormancy, which are used by ticks to survive unfavorable circum-

stances, i.e. extreme heat or coldness (Dautel 2010). 

Some tick species are strictly host-specific and are only found on certain wild mam-

mals and birds or in their dens and nests (Liebisch and Rahman 1976, Petney et al. 

2011). For example, Ixodes vespertilionis feeds only on bats (Siuda et al. 2009), while 

other species like Ixodes arboricola are more specialized for birds (Schilling et al. 

1981). In contrast to this, the most common European species, Ixodes ricinus, has no 

specific spectrum of hosts and infests more than 300 vertebrate species ranging 

through reptiles and birds to mammals (Baranton and De Martino 2009, Hubálek 

2009). Because of its polyphagy, I. ricinus plays a central role in the propagation of 

Borrelia spp. and of other tick-borne pathogens (Faulde and Hoffmann 2001, Stanek 

2005, Aspöck 2008, Reis et al. 2011). 
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2.2.4 Morphology of the Ixodidae 

The dorsoventral flattened body of hard ticks is structured into 3 major regions: (1) 

the capitulum with its mandibles, (2) the body (the idiosoma), and (3) the legs 

(Sonenshine and Roe 2013b). The capitulum contains the basis capituli connecting 

the capitulum with the main body of the tick, as well as the mandibles that consist 

of the external pedipalps, a pair of chelicerae and the hypostome, which is immova-

ble and covered with barbs anteriorly (Hillyard 1996, Sonenshine and Roe 2013b). 

The tick body is usually subdivided into an anterior, i.e. the podosoma, and a poste-

rior region, i.e. the opisthosoma (the abdomen). The anterior region carries 4 pairs 

of walking legs and the genital pore, while the opisthosoma comprises the anal ap-

erture and the spiracular plates. In contrast to adult hard ticks, larvae have only 3 

pairs of legs (Petney et al. 2011). The tarsus of the two most anterior legs contain 

Haller’s organ, which is an important sensory organ helping ticks to recognize heat, 

odors and other environmental factors (Petney et al. 2011, Sonenshine and Roe 

2013b). All ixodid ticks have the characteristic hard, sclerotized plate, the scutum, 

which is important for species determination (Petney et al. 2011). For male hard 

ticks the scutum covers the whole idiosoma, whereas for females, nymphs and lar-

vae the scutum is smaller and occupies only the anterior third of the dorsal surface.  

The body of a male Ixodes ricinus, which is about 2.6 mm, appears in a uniform black 

brownish color. In comparison to females, males have seven sclerotized plates on 

the ventral side. The idiosoma of unfed I. ricinus females is usually reddish, but can 

vary from brown gray to beige after a blood meal. During feeding the body length of 

an I. ricinus female can grow from about 3.3 mm under unfed conditions up to 1.1 cm 

(Hillyard 1996). Males have a size of about 2.6 mm, and nymphs of approximately 

1.4 mm. The larvae of I. ricinus are yellowish-translucent and have an approximate 

size of 0.5 mm in an unfed state. For adult Ixodes spp. the genital aperture lies in the 

anterior third, between the coxen of the fourth pair of legs (Hillyard 1996). Nymphs 

and larvae possess no genital aperture und are therefore not sexually differentiable. 

The life history stages of I. ricinus are displayed in Figure 2.6. 
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Adult Dermacentor marginatus (Figure 2.7) are about 3.5 to 5 mm long and the sexes 

show conspicuous differences in their appearances. The full-shielded males have a 

shimmering silver, dark grey and reddish coloring, while the partly shield-covered 

females appear in a brown to reddish color. Nymphs in an unfed state are approxi-

mately 1.6 mm long and 0.9 mm wide, while their shield covers about one-third of 

the body. Fully engorged females can reach a length of up to 1.5 cm. The larva of D. 

marginatus are about 0.75 mm long and about 0.5 mm wide, while their back shield 

covers approximately the half body (Mitrea et al. 2008). 

Figure 2.6: Comparison of Ixodes ricinus life history stages showing a larva (left), a nymph 
(second from the left), an adult female (second from the right) and an adult male tick 
(Stanek et al. 2012) 

Figure 2.7: Comparison of adult female (left) and male (right) Dermacentor marginatus. The 
image has been acquired by Dragiša Savić (http://www.naturefg.com). 
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2.2.5 Distribution and ecology 

2.2.5.1 Ixodes ricinus 

Ixodes ricinus is the most common tick species in Central Europe (Gern and Humair 

2002, Stanek 2005, Aspöck 2008). It constitutes more than 90% of the overall tick 

fauna (Kimmig et al. 2010) and is the most commonly studied species (Petney et al. 

2012). The geographic range of I. ricinus is related to temperate climate, which ex-

tends from the Atlas Mountains in North Africa to a latitude of about 65° north in 

Scandinavia and from Portugal to a longitude of 60° east in Central Asia (Hillyard 

1996, Petney et al. 2012) , although there is some indication that the North African 

specimens may represent a sister species (Estrada-Peña et al. 2013). The eastern 

distribution area overlaps with the range of the near relative Ixodes persulcatus. 

Within this geographic range the local occurrence of I. ricinus over the whole year is 

restricted to regions with high humidity (Donnelly 1987). The range with respect to 

altitudes has expanded from 700 m at the end of the 1970s to over 1100 m after the 

turn of the millennium (Dautel 2010). Moreover, the distribution of I. ricinus seems 

to be expanding further northwards (Lindgren et al. 2000). In Germany, I. ricinus 

occurs in all states, where it can also be found within city areas (Petney et al. 2012). 

A recent map depicting the habitat suitability (see Estrada-Peña 1999) for I. ricinus 

in Europe and in the western parts of Asia is provided in Figure 2.8. 

Like all other hard ticks, I. ricinus passes through multiple development stages, from 

egg over larva and nymph to adult tick (see Figure 2.9) and uses a passive strategy 

for finding hosts (Sonenshine and Roe 2013a). Thereby, host-seeking ticks lie in wait 

(“questing phase”) on the vegetation, e.g. at the tip of grass stalks. During questing 

the ticks stretch out their front legs (Sonenshine and Roe 2013a). Situated on the 

front legs is Haller's organ, a small dent with sensory hairs, which ticks uses to detect 

mechanical, thermal and chemical stimuli. Movement and carbon dioxide emission 

of the hosts are recognized (Sonenshine and Roe 2013a). Once a host passes by, the 

tick releases the grass stalk, moves onto the host and searches its body for a suitable 

attachment site. Depending on the life history stage, the period that ticks stay at-

tached to the host varies from 2 to 3 days for larvae, 4 to 5 days for nymphs and 7 to 
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9 days for adult females (Sonenshine and Roe 2013a). Mating ticks can be observed 

on the vegetation or on the host. After females are fully engorged, they detach from 

the host and can deposit between 2000 and 3000 eggs within the vegetation where 

they then die (Hillyard 1996). Larvae and nymphs detach from the host and molt on 

the ground within a few months to become nymphs and adult ticks, respectively. 

Each phase requires about 1 year to complete (Gray 1991). Therefore, the complete 

development cycle of I. ricinus usually takes over 3 years in natural surroundings. 

However, this period can vary between 2 and 6 years depending on the geographical 

location and on the associated climatic conditions (Gray 1991). Each life history 

stage can survive up to 2 years off-host (Brunnemann 2010). 

Figure 2.8: Map of the predicted spatial distribution of Ixodes ricinus in Europe. Habitat suit-
ability is mapped as a range of grey values from dark (low suitability) to light (highest suit-
ability). Black lines represent the NUTS administrative divisions. The map has been pro-
vided by Agustín Estrada-Peña and was generated from data of 2014. 
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Although more than 300 vertebrate hosts are known for I. ricinus (Stanek 2005), the 

three life history stages prefer different hosts and seek their hosts at different 

heights within the vegetation (Mejlon and Jaenson 1997). Larvae are found near the 

ground, which is why they predominantly parasitize smaller mammals (Skuballa 

2011). In a typical woodland habitat mice are the most important hosts for larvae. 

Nymphs wait on tall grasses and low ferns at an approximate height of 10 to 20 cm 

for their hosts and therefore can be found on a wider variety of vertebrate species, 

such as hedgehogs and squirrels, as well as on even larger mammals (Skuballa 

2011). Under optimal conditions adult ticks can climb up to 100 cm (Mejlon and 

Jaenson 1997) and their horizontal movement is no more than 20 cm (Healy and 

Bourke 2008). Deer in general, and in particular roe deer in Europe, are important 

for adult females as they supply sufficient quantities of blood for egg production. 

Therefore, large deer hosts maintain and support the size of the tick population 

Figure 2.9: The development cycle of Ixodes ricinus in relation to the important host species 
serving for blood meals at each life history stage. Black host species (roe deer and wild boar) 
are studied within this thesis.  
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(Alberdi et al. 2000, Stanek 2005, Vor et al. 2010, Handeland et al. 2013, Pacilly et al. 

2014). A detailed review underlining the importance of roe deer as host for I. ricinus 

can be found in the thesis of Overzier et al. (2013). Conversely, the exact role of wild 

boar in the life cycle of I. ricinus is still unclear (Sprong et al. 2009, Pacilly et al. 2014). 

I. ricinus prefers biotopes with humus-rich and slightly sour soils, which are charac-

terized by an herbaceous vegetation with a cover of dead leaf and plant matter 

(Kurtenbach et al. 1995). Conifer, broadleaf and mixed forests with a large amount 

of undergrowth und near-ground vegetation provide an ideal habitat for their ticks. 

Additionally, these habitats constitute an outstanding biotope for I. ricinus hosts, 

such as roe deer, wild boar and small mammals (Gray 2002, Stanek 2005). 

In general, the micro climate directly at ground level, in particular the high relative 

humidity, differs significantly from the areas predominant macro-climate. This mi-

cro-climate is essential for the activity and the survival of host-seeking ticks (Daniel 

and Dusbabek 1994, Perret et al. 2000). I. ricinus strongly depends on humidity and 

is only able to survive in biotopes in which the relative air humidity at the base of 

the vegetation is seldom below 85% (MacLeod 1935, Gray 2002). Within continental 

Europe, 2 characteristic seasonal abundance maxima (bimodal activity pattern) 

have been observed for adult and nymphal I. ricinus: the first seasonal peak lies be-

tween March and June, also called “spring peak”, and the second less intense peak 

occurs between August and October, also known as the “autumn peak” (Donnelly 

1987, Kurtenbach et al. 2006). In some regions, for example the south of England 

and Ireland, the activity pattern can also be unimodal with only a single peak 

(Kurtenbach et al. 2006). Besides the relative humidity, the temperature also deter-

mines the seasonal activity and the abundance of host-seeking ticks. The lethal tem-

perature for I. ricinus lies below -15 °C and above 30 °C (Dautel 2010), whereby a 

considerable increase of tick activity has been registered for daily air temperatures 

above 10 °C (Randolph et al. 2002). For eggs and larvae temperatures below -7 °C 

cause death after a few days (Lengauer 2004). The survival rate of I. ricinus depends 
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largely on the individuals’ energy reserves. These are tightly coupled with water re-

serves which need constant renewal near to the ground to prevent the ticks from 

dehydrating (Perret et al. 2003). 

2.2.5.2 Dermacentor marginatus 

So far, D. marginatus has been reported in France, Germany, Hungary, Italy, Mo-

rocco, North Africa, Poland, Slovakia, Spain, Switzerland and former Yugoslavia as 

well as from East to South and Central Russia up to Western Siberia (Arthur 1960, 

Nosek et al. 1967, Darvishi et al. 2014). It was also found in northwestern provinces 

of Iran (Nabian et al. 2008). Evidence suggests that D. marginatus has been imported 

by the transportation of dogs from Mediterranean countries or Portugal to Central 

European countries in the mid-90s (Glaser and Gothe 1998). In Germany, findings 

of D. marginatus have been reported from Baden-Württemberg, Bavaria, Hesse, 

Rhineland-Palatinate and the Saarland (Petney et al. 2012). Recent georeferenced 

findings (Rubel et al. 2014) of D. marginatus in Germany are displayed in Figure 2.5. 

Thereby, D. marginatus is found up to heights of 3,500 m above sea level with a pre-

ferred range between 800 and 1,000 m (Estrada-Peña et al. 2004a, Selmi et al. 2009). 

D. marginatus it a three-host tick and an entire life cycle takes one year under natu-

ral and 92 to 163 days under laboratory conditions (Nosek et al. 1967, Estrada-Peña 

et al. 2004a, Darvishi et al. 2014). Development of larvae takes about three weeks 

until they hatch during spring, as soon as suitable environmental conditions occur 

(Arthur 1960). The hatched larva remains some days in the litter layer and then 

starts to search for a host. Once a larva has found a suitable host, it feeds between 2 

and 10 days depending on its age (Arthur 1960). Then it detaches from the host and 

molts on the ground. Once the nymphs have attached to a host, they feed 4 to 11 

days, detach and molt (Arthur 1960, Nosek et al. 1967). Adult D. marginatus can be 

found on the vegetation, waiting for suitable hosts in the characteristic “questing 

position” at an altitude above the ground of ideally 20 to 50 cm (Arthur 1960). Fe-

males take far more blood than male D. marginatus, but in contrast to I. ricinus, male 

D. marginatus need a blood meal to become able to mate (Liebisch and Rahman 
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1976). After feeding males can mate with several females. Mating occurs on the host 

while the female is still feeding. After mating and feeding, the female detaches and 

finds a suitable place on the ground for oviposition (Liebisch and Rahman 1976). 

Adult ticks spend the winter just over the frozen ground in a cold rigidity with re-

duced metabolism. With increasing temperatures they become active (Arthur 

1960). 

Hosts of adult D. marginatus comprise a wide spectrum of wild animals, including 

roe deer, wild boar, horses, cattle and other even-toed ungulates as well as domestic 

animals, but in particular sheep (Petney et al. 2012). While adults prefer large mam-

mals, the larvae and nymphs are found on mice and other small mammals (Arthur 

1960, Nosek et al. 1967). D. marginatus attaches to domestic dogs, but is rarely 

found on humans (Immler et al. 1970, Liebisch and Rahman 1976). In Germany, 

sheep are the predominant hosts (Liebisch and Rahman 1976). In general, D. mar-

ginatus has a patchy distribution (Petney et al. 2012). One reason might be the lack 

of suitable hosts for the adult life stages in some areas (Petney et al. 2012). In Ger-

many, the maintenance of D. marginatus populations is thought to depend on the 

presence of sufficient sheep (Liebisch and Rahman 1976). 

D. marginatus has a relatively high resistance to drought (Immler et al. 1970) and 

cold (Dörr and Gothe 2001), but is rather sensitive to humidity (Meyer-König et al. 

2001). Therefore, the species prefers dry, warm and sparsely vegetated habitats, 

such as bush- and grasslands (Immler et al. 1970), but it is also found along the 

courses of rivers where it inhabits distant, isolated areas (Liebisch and Rahman 

1976). This behavior also explains the patchy distribution of D. marginatus (Petney 

et al. 2012). A Spanish study showed that the distribution correlated with various 

climatic and vegetation parameters, such that a relatively high Normalized Differ-

ence Vegetation Index (NDVI), a mean temperature between 14 °C and 15.8 °C and 

a maximum temperature around 27 °C where significant indicators for D. margina-

tus (Estrada-Peña et al. 2004b). In Slovakia, active D. marginatus adults prefer tem-

peratures from 4 °C to 16 °C (Selmi et al. 2009). Adult individuals are most active 
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from the end of February until the beginning of May with an activity peak during 

March. During spring Liebisch and Rahman (1976) observed a prevalence of 100% 

with up to 200 ticks per sheep in several German states. A second phase of activity 

occurs from September to October and consists primarily of individuals that did not 

feed during spring or that belong to a new generation of adults (Liebisch and 

Rahman 1976). In Russia and Central Europe, larvae are most active during June and 

July, while nymphs reach their maximum abundance between July and September 

(Arthur 1960). 

2.3 Tick-borne diseases 

2.3.1 Lyme borreliosis 

Lyme borreliosis, also known as Lyme disease, is an infectious disease that is caused 

by spirochetes of the Borrelia burgdorferi sensu lato species complex (see Section 

2.3.1.2). These are transmitted by ticks of the genus Ixodes (see Section 2.3.1.5). 

Lyme borreliosis is the most common arthropod-borne disease in Europe where it 

has an important impact on public health (Wilske 2003, Rizzoli et al. 2011). The ex-

panding geographical distribution of Lyme borreliosis is likely to become an increas-

ingly relevant risk factor for public health in the near future. Thus, the study of the 

complex interactions between socio-economic and environmental influences on the 

ecology and epidemiology of Lyme borreliosis will become more and more im-

portant (Rizzoli et al. 2011). 

2.3.1.1 Historical background 

Only very recently, spirochetes-like cells were found in a tick larva that was trapped 

in amber some 15 to 20 million years ago, whereby a large grouping of cells showed 

a close resemblance to Borrelia (Poinar 2014). This finding suggests that tick-borne 

bacteria have been transmitted for millennia, potentially also in humans, for exam-

ple the glacial body (Ötzi) was found to be infected with Borrelia burgdorferi s.l. 

(Keller et al. 2012). The first reporting of clinical sings of Lyme borreliosis go back 



Related work - Tick-borne diseases 

46 

to the 19th century. In Europe, Buchwald (1883) observed an inflammatory skin le-

sion, acrodermatitis chronica atrophicans (ACA), also known as Herxheimer disease, 

which is usually related to the last stage of Lyme borreliosis. Afzelius, a Swedish der-

matologist, identified the typical red rash on the skin, also known as erythema mi-

grans (EM) in 1909 (Afzelius 1910). Further investigations (Garin and Bujadoux 

1922) described radicular pains and neurological disorders that appeared after EM 

with many cases of chronic lymphocytic meningitis being reported (Bannwarth 

1941). In the meantime, Hellerstrom (1930) had recognized a causal relation be-

tween ticks bites, characteristic dermatoses and neurological symptoms. Moreover, 

in 1953 Bäfverstedt (1953, 1960) reported lymphadenosis cutis benigna that is ex-

pressed by cutaneous disorders, such as swellings and stains on the skin (Lipsker 

and Jaulhac 2009, Brunnemann 2010), which were related to Lyme disease. The first 

successful treatments of EM (Hollström 1951) and ACA (Thyresson 1949) employed 

antibiotics (e.g. penicillin), although the infective nature of EM and ACA was not 

proven until 1955 (Binder et al. 1955, Götz 1955). Although the bite of I. ricinus was 

known to cause EM in Europe (Hellerstrom 1951), the real aetiology stayed unclear 

until arthritis and EM were found and investigated in the northeastern United 

States. 

More than six decades after the first report by Afzelius, in the mid-1970s, an unusu-

ally clustered appearance of juvenile rheumatoid arthritis (JRA) in children, teenag-

ers and few adults was investigated (Mast and Burrows 1976, Steere et al. 1977) in 

the coastal community of Old Lyme, Connecticut in the United States. Soon after the 

observations made in Old Lyme, a connection between skin rashes in Europe and 

arthritis was noted (Barbour and Fish 1993). On epidemiological grounds, a further 

study (Steere et al. 1978) that searched for the etiologic agent revealed that EM and 

Lyme arthritis are tick-transmitted diseases, with Ixodes scapularis as the vector in 

the United States, with many patients reporting tick bites preceding the disease. The 

isolation of spirochetes from the gut of I. scapularis ticks by Burgdorfer et al. (1982) 

first indicated the etiological agent causing Lyme borreliosis, since these bacteria 

showed a reaction with the immune sera from patients in the United States who had 
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had EM and Lyme disease. Thus, the pathogen and the vector of Lyme disease were 

identified at the same time. Only few months later, similar spirochetes were also 

isolated in Europe from I. ricinus, which is closely related to I. scapularis (Burgdorfer 

et al. 1983). Additional studies conducted during the same and in the following years 

verified the findings of Burgdorfer (Barbour et al. 1983, Steere et al. 1983, Pfister et 

al. 1988). In 1984, the spirochetes were named after their discoverer as Borrelia 

burgdorferi (Johnson et al. 1984). Moreover, the disease was named after the place 

of discovery as Lyme borreliosis (Gern and Falco 2000). 

2.3.1.2 Systematics 

In the context of taxonomy, the species of the B. burgdorferi s.l. complex are Eubac-

teria belonging to the order of Spirochaetales and the family of Spirochaetaceae. The 

order of Spirochaetales comprises three additional families: Brachyspiraceae, 

Brevinemataceae and Leptospiraceae (Krieg et al. 2011). However, with respect to 

human pathogenicity the genera Borrelia, Treponema, the agent of syphilis (Trepo-

nema pallidum) as well as Leptospira, the agent of leptospirosis (Leptospira interro-

gans) are of most importance (Porcella and Schwan 2001). The genus Borrelia is 

usually divided into 2 main groups: (1) the B. burgdorferi s.l. complex, which is re-

sponsible for Lyme disease, and (2) the agents of the relapsing fever (e.g. B. duttoni, 

Wang et al. 1999a, Olsen et al. 2000). 

Borrelia spirochetes follow a strictly parasitic mode of life. Their lifecycle consists of 

phases that involve arthropods, particularly ticks, as vectors and vertebrates as host 

(Baranton and De Martino 2009). The B. burgdorferi s.l. spirochetes are vectored by 

ticks of the genus Ixodes, whereas most of the relapsing-fever Borrelia spirochetes 

are transmitted through argasid ticks of the genus Ornithodorus. Relapsing fever 

caused by Borrelia recurrentis is transmitted by the human body louse (Pediculus 

humanus) (Ras et al. 1996, Raoult and Roux 1999). Conversely, the relapsing-fever-

related species Borrelia miyamotoi can also occur in ixodid ticks (Fraenkel et al. 
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2002, Barbour et al. 2009). In this thesis only species of the B. burgdorferi s.l. com-

plex will be investigated. For this reason, and for the sake of simplicity, the used 

terms Borrelia and borreliosis refer to this complex. 

When B. burgdorferi was discovered, it was assumed that it was a unique species 

(Burgdorfer et al. 1982). However, the molecular typing of a multitude of isolates 

from ticks, hosts and patients led to the insight that Lyme borreliosis is caused by 

multiple Borrelia species (Stanek and Reiter 2011). To date, at least 18 different 

genospecies have been included in the B. burgdorferi s.l. complex worldwide. In the 

northern part of the United States, B. burgdorferi sensu stricto is the only species 

that causes Lyme borreliosis in humans. Five species are clearly pathogenic for hu-

mans in Europe: B. afzelii, B. burgdorferi s.s., B. garinii, B. spielmanii and B. bavari-

ensis (Baranton and De Martino 2009, Stanek et al. 2012). In comparison to the 

United States, the larger number of species involved could cause a wider variety of 

clinically detected symptoms in Europe (Stanek et al. 2012). The species B. bissettii, 

B. lusitaniae, and B. valaisiana seem to be less important pathogens, since they have 

been found only occasionally in patients (Stanek et al. 2012). 

The term genospecies has been generally accepted over the term species in Borrelia 

research, because the different genospecies are not distinguishable by morphology 

and thus their descriptions are mostly based on genetic features. B. burgdorferi s.l. 

is a genetically very heterogeneous group of species. Between and within genospe-

cies there can exist multiple strains, which can have considerably different genetic 

configurations. For this reason, taxonomic reorganization can happen after the ini-

tial naming of genospecies. For example, based on multilocus sequence analysis 

(MLST/MLSA) B. garinii OspA-serotyp 4 has been renamed to B. bavariensis (Margos 

et al. 2009) and a B. bissettii strain was renamed to B. kurtenbachii (Margos et al. 

2010). The complex taxonomy of Lyme borreliosis spirochetes reflects their corre-

spondence to ecotypes and thus their ecology (Margos et al. 2009, 2011). 
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2.3.1.3 Morphology 

All species of the B. burgdorferi s.l. complex are gram-negative, helical-shaped bac-

teria (see Figure 2.10). Their length ranges from 10 µm to 20 µm, while their width 

varies between 0.2 and 0.5 µm (Barbour and Hayes 1986). Like other spirochetes, 

Borrelia possess an inner and outer membrane. The outer membrane encloses a pro-

toplasmatic cylinder, which consist of the inner membrane and the cytoplasm. A fur-

ther structural element is a 2 to 10 nm thin mucoid layer, which wraps around the 

Figure 2.10: Morphological structure of Borrelia burgdorferi s.l. Top row (a): scanning (left) 
und transmission (right) electron micrographs. Second (b) and third (c) row: schematic 
view of the internal spirochete structure (adapted from Rosa et al. 2005) 
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outer membrane and is quite unstable and easy to remove (cf. Brunnemann 2010). 

Between the outer and inner membranes of the cell lie 7-11 periplasmic flagella, 

which are used for locomotion (Barbour and Fish 1993, Wang et al. 1999b, Rosa et 

al. 2005). The flagella rotate in a counterclockwise direction as viewed from the back 

of the cell, causing waves to move from the anterior to the posterior ends of the cell 

(Li et al. 2000). However, different strains of B. burgdorferi s.l. can show morpholog-

ical differences, such as a different number of flagella, differently shaped cell endings 

or the formation of vesicle (Hovind-Hougen 1984, Schulze et al. 1995). 

2.3.1.4 Genetic features 

The B. burgdorferi s.s. strain B31 was the first spirochete species for which the com-

plete genome was sequenced (Fraser et al. 1997). It consists of a main chromosome 

of 910,725 base pairs and 11 plasmids, which have a size between 15 and 60 kb. The 

chromosome contains 853 genes, which encode proteins for DNA replication, tran-

scription and translation, for solute transport and energy metabolism, for motility 

and chemotaxis, as well as for regulation of gene expression, repair and recombina-

tion of genes. However, genes for cellular biosynthetic reactions encoding enzymes 

for the synthesis of amino acids, fatty acids and nucleotides are lacking. Genes en-

coding proteins of the oxidative phosphorylation or tricarboxylic acid cycle were 

also not identified (Fraser et al. 1997). Therefore, the nutritional requirements of 

the spirochetes need to be satisfied by their environment (Stanek et al. 2012). 

Complete sequences have also been obtained for other isolates, including B. garinii 

strain PBi and B. afzelii strain PKo (Casjens et al. 2011a, 2011b, Schutzer et al. 2011, 

2012). All these analyses showed that all Borrelia have a main linear chromosome, 

which has a length of about 950 kb. In this way, Borrelia differs from the closely 

related genera Leptospira and Treponema, which have a circular chromosome. In 

addition to the main chromosome, B. burgdorferi s.l. genomes include multiple linear 

and circular plasmids (e.g. OspA plasmids). Among the different Borrelia strains the 

number of plasmids and their sizes (5 to 220 kbp) vary substantially (Fraser et al. 

1997, Casjens 2000, Terekhova et al. 2006). On the plasmids lie genes for surface 
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proteins, for example, the so-called outer surface proteins (osp) or the lipoprotein 

variable major protein-like sequence, expressed (VlsE). The surface proteins and the 

VlsE are essential for pathogen-host interactions and for the survival of the complex 

life cycle of the spirochetes (Stewart et al. 2005, Marques 2010), respectively. In 

contrast to other well-studied bacterial pathogens, none of the plasmid genes of B. 

burgdorferi s.l. show similarity to known bacterial virulence genes suggesting that 

the plasmids encode functions that are specific to the spirochete infectious cycle 

(Rosa et al. 2005, Baranton and De Martino 2009). 

An analysis of the metabolic pathways suggests that Borrelia gain their energy 

mainly by using the substrate phosphorylation during glycolysis. Due to its meta-

bolic abilities, the existence of Borrelia is bound to a host which provides its nutri-

ents (Fraser et al. 1997). Thereby, Borrelia have developed many different strategies 

to circumvent the immune system of their host (Embers et al. 2004, 2007, Singh and 

Girschick 2004, Coutte et al. 2009). These strategies include the suppression of in-

nate and adaptive immune responses, retreat to niches not accessible to the immune 

system and the possibility to change their surface structure (antigen variation) 

(Ohnishi et al. 2001, Embers et al. 2007, Coutte et al. 2009). The change in the anti-

gen structure is based on recombination events. This mechanism is common, espe-

cially in micro-organisms that cause a long-lasting or repeated infections (Coutte et 

al. 2009). Pathogens that are able to vary their antigen have an advantage over their 

hosts, which first have to adapt their immune system to the new surface coat. A pro-

tein that is subject to a very strong recombination is VlsE that is expressed by Bor-

relia only in vertebrate hosts. The constant changes in Borrelia surface complicates 

the production of a vaccine (Coutte et al. 2009). A vaccine for humans was success-

fully marketed in the U.S., but withdrawn from the market for economic reasons 

(Rizzoli et al. 2011). In Europe the development and the application of a vaccine is 

difficult due to the heterogeneity and diversity of the Borrelia genospecies (see Sec-

tion 2.3.1.2). 
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2.3.1.5 Transmission 

To maintain the cycles of B. burgdorferi s.l. in a certain habitat appropriate hosts 

must be present, in addition to competent vectoring ticks and suitable climatic con-

ditions (Kurtenbach et al. 1998a, 1998b). Reservoir hosts play a key role in the epi-

demiological cycles, as only ticks feeding on them can become infected. In wooded 

areas, rodents, like the yellow-necked mouse (Apodemus flavicollis), the wood 

mouse (Apodemus sylvaticus) and the bank vole (Myodes formerly Clethrionomys 

glareolus), play an important role in the sense that they act as reservoirs for B. 

burgdorferi s.l. (Kurtenbach et al. 1998a, Piesman and Gern 2004). However, Apode-

mus and Myodes showed different transmission patterns, such that their reservoir 

competence appeared to be modulated by their immune response towards the path-

ogen and ticks (Piesman and Gern 2004). Moreover, another vole, Microtus agrestis, 

black rats (Rattus rattus) and Norway rats (R. norvegicus) may infect feeding I. rici-

nus ticks in urbanized environments (Piesman and Gern 2004). In France and Ger-

many, edible dormice (Glis glis), the European hedgehog (Erinaceus europaeus) and 

garden dormice (Eliomys quercinus) have been confirmed as reservoir hosts for Bor-

relia (Piesman and Gern 2004). Many other vertebrate animals, particularly small- 

to medium-sized mammals, are classified as reservoir-competent (Gern et al. 1998). 

Larger mammals, such as deer and cattle, also play an important role in the cycle of 

B. burgdorferi s.l. because they provide the large blood meals necessary for adult 

female ticks, supporting oviposition, and thus helping to maintain the tick popula-

tion size (Bhide et al. 2005, Pacilly et al. 2014). However, these larger hosts are res-

ervoir incompetent (Telford et al. 1988, Gern et al. 1998, Richter and Matuschka 

2010). 

The risk for humans to become infected by Lyme disease spirochetes depends on 

the tick distribution and on the infection rate of Ixodes ticks. The main vector in Eu-

rope is I. ricinus, the main vector in Asia is I. persulcatus, the main vector in north-

eastern and Upper Midwestern USA is I. scapularis and the main vector in western 

USA is I. pacificus (Stanek et al. 2012). Usually, the prevalence of Borrelia in adult 
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ticks is highest because the blood feeding during larval and nymphal stages in-

creases the likelihood of an infection by a factor of two (Hubálek and Halouzka 

1997). Nymphs play a key role as vectors of Borrelia during spring and summer for 

humans and other vertebrates, because they have the opportunity to become in-

fected as larvae on a reservoir host. Additionally, human out-door leisure behavior 

in spring and summer increases the risk of infection to humans because it commonly 

takes place in tick habitats (Stanek 2005, Hubálek 2009). A second period with in-

creased infection risk arises in autumn by the activity of adult ticks. However, adult 

ticks are more easily recognized on the human body than immature life history 

stages and if removed in time (see below) do not transmit the infection. Borrelia 

spirochetes are injected through the tick saliva during a blood meal. At least 36 

hours of feeding are necessary for a successful transmission of B. burgdorferi by I. 

scapularis or I. pacificus ticks to occur (Sood et al. 1997), while the transmission of 

B. afzelii by I. ricinus can happen within a shorter period (17 h) (Kahl et al. 1998). 

Most Lyme borreliosis cases are caused by bites from infected nymphs (Marques 

2010). Predictors for Borrelia prevalence are the activity of nymphs and the inten-

sity of human recreational activity, such that most infections occur between May and 

August (Marques 2010). 

Several studies show an association between the different genospecies and pre-

ferred reservoir host (Lindgren and Jaenson 2006). For example, B. afzelii and B. 

bavariensis have predominantly been isolated from rodents (Humair et al. 1999, 

Huegli et al. 2002, Richter et al. 2004, Kurtenbach et al. 2006). Conversely, B. garinii 

and B. valaisiana are mainly specialized on various bird species (Hanincová et al. 

2003, Kurtenbach et al. 2006, Gern et al. 2008). There are 2 principal transmission 

cycles for B. burgdorferi s.l.: (1) the rodent-tick cycle and (2) the bird-tick cycle. B. 

burgdorferi s.s. makes use of both cycles and seems least specialized to a certain host 

(Kurtenbach et al. 2006, Gern 2008). 
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2.3.1.6 Epidemiology 

Species of the B. burgdorferi s.l. complex are distributed worldwide (see Figure 

2.11). Seven Borrelia genospecies can be found in North America: B. burgdorferi s.s., 

B. andersonii (group 21038), B. bissettii (group DN127), B. californiensis, B. caro-

linensis, B. americana and B. kurtenbachii. The most common genospecies on the Eu-

ropean mainland are B. afzelii and B. garinii including B. garinii OspA type 4 (recently 

renamed to B. bavariensis), which are widely spread across the continent (Rauter 

and Hartung 2005, Kurtenbach et al. 2006). The third-most common genospecies is 

B. burgdorferi s.s., which is found mainly in Eastern Europe (Rauter and Hartung 

2005, Sonenshine and Roe 2013a) but rarely in the western areas. The limited 

spread of B. lusitaniae over South-West Europe might be explained with its close 

relationship with lizards (Younsi et al. 2005). On the British Isles, the distribution of 

genospecies differs fundamentally from the distribution patterns on the European 

Figure 2.11: Map of the geographical distribution of some B. burgdorferi s.l. species (colored 
ellipses) and clinically recorded Lyme borreliosis cases (beige background) worldwide. 
(adapted from Kurtenbach et al. 2006). Species identified after 2006 are not included in the 
map. 
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mainland: there B. garinii and B. valaisana are the dominant genospecies 

(Kurtenbach et al. 2006). To date, B. spielmanii has been found in Europe occasion-

ally and B. japonica is mainly distributed in Asia (i.e. in Japan). Other genospecies 

present in Asia are B. tanukii, B. turdi and B. sinica (Stanek and Reiter 2011). In 2008, 

five B. valaisiana-related strains isolated from rodents and ticks in southwestern 

China were identified as a new genospecies and were named B. yangtze (Chu et al. 

2008). In Germany 5 to 35% of I. ricinus are infected with B. burgdorferi s.l. depend-

ent on year and locality (Oehme et al. 2002, Rauter et al. 2002, Kampen and Rotzel 

2004). In highly endemic areas up to 44% is possible (Maiwald et al. 1995). 

There is considerable variation in the annual incidence of human Lyme disease cases 

in Europe. One reason for this is that only few European countries have made Lyme 

borreliosis mandatorily notifiable (Rizzoli et al. 2011). Estimations assume an inci-

dent rate between 65,500 (Wilske 2003, Rizzoli et al. 2011) and 85,000 (Lindgren 

and Jaenson 2006) new borreliosis cases per year in Europe. Annual incidence rates 

(Hubálek 2009) are between 0.01 and 137 per 100,000 inhabitants in Turkey and 

Slovenia, respectively. In addition to other European countries such as Austria, Ger-

many is a highly endemic area. Because there is no common federal reporting obli-

gation for Borrelia infections, the exact number of new cases per year in Germany is 

not known. However, Lyme borreliosis is a notifiable disease in the new federal 

states of Germany and since June/July 2011 in Rhineland-Palatinate and Saarland. 

Krause and Fingerle (2009) assume an annual incidence rate of 25 to over 100 per 

100,000 inhabitants/year, so that an average of 20,000 to over 80,000 new cases 

can be expected in Germany every year. According to recent estimates made by the 

National Reference Center for Borrelia (Nationales Referenzzentrum für Borrelien) 

of the Robert-Koch-Institute, about 60,000 to 100,000 people are infected by Lyme 

disease each year (Robert Koch-Institut 2011). 



Related work - Tick-borne diseases 

56 

2.3.1.7 Pathogenesis and clinical symptoms 

In Europe, Lyme disease in humans is mainly caused by B. afzelii, B. garinii and B. 

burgdorferi s.s. (Baranton and De Martino 2009). However, some DNA from B. va-

laisiana, B. lusitaniae, B. spielmanii and B. bissettii has occasionally been found in pa-

tient samples (Picken et al. 1997, Wang et al. 1999a, da Franca et al. 2005, Baranton 

and De Martino 2009). While the human pathogenicity of B. burgdorferi s.s., B. afzelii, 

B. garinii, B. bavariensis and B. spielmanii is beyond doubt, it is still not entirely clear 

for the other genospecies (Baranton and De Martino 2009). Lyme disease is charac-

terized by a range of different clinical manifestations and disease outcomes, which 

depend on the state of the immune system of the infected organisms, as well as on 

the Borrelia genospecies involved (Stanek et al. 2012). The infection proceeds in 

more than 25% of clinical cases without any clinical signs (Krause and Fingerle 

2009). An early sign of infection is an erythema migrans (EM) at the site of the tick 

bite characterized by a local, usually circular skin reddening. This occurs in 60 to 

90% of the cases within 1 to 3 weeks after the tick bite (Krause and Fingerle 2009). 

The genospecies pathogenic to humans seem preferentially to infect certain organ 

systems. For example, B. afzelii is associated with skin symptoms, particularly with 

EM, but also with the chronic skin lesions of ACA (Stanek et al. 2012). Similarly, B. 

spielmanii has been isolated mainly from skin biopsies of EM patients (Wang et al. 

1999a, Földvári et al. 2005, Maraspin et al. 2006). Neurological dysfunction after 

infection with B. garinii strains or B. bavariensis occurs frequently, whereas B. 

burgdorferi s.s. is often mentioned in conjunction with severe Lyme arthritis and 

systemic signs of infection (Van Dam et al. 1993, Balmelli and Piffaretti 1995, 

Demaerschalck et al. 1995, Picken et al. 1998, Ornstein et al. 2001, Floris et al. 2007, 

Stanek et al. 2012). Lyme borreliosis is a multi-system or multi-organ disease in 

which the different organ systems can be infected individually or in combination. In 

particular, skin, joints and the central nervous system, but also heart muscles, eyes 

and vessels are affected (Kauffmann and Wormser 1990, Karma et al. 1995, de 

Carvalho et al. 2008, Palecek et al. 2010). However, apart from the EM, which may 

precede a late manifestation, most patients show only symptoms in a single organ 
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system (Stanek et al. 2012). The differing manifestations in organs are related to the 

heterogeneity of the B. burgdorferi s.l. complex (Baranton and De Martino 2009). 

Lyme disease in humans is often divided into 3 stages (see Figure 2.12) that often 

merge fluently, whereby the first and second stage can also be seen as the early-

stage and the third as the late-stage of Lyme borreliosis (Stanek et al. 2012). How-

ever, the disease can miss a certain stage. For example, local infections or even the 

spread of pathogens in the body can remain without tangible clinical symptoms, un-

til finally organ manifestation of the third stage occurs. A detailed description of the 

3 stages of Lyme disease with its clinical symptoms is given by Gern and Falco 

(2000), Skuballa (2011) and Steere et al. (2004). 

Domestic animals can become ill with Lyme disease. The disease can be similar to 

that found in humans (Gall and Pfister 2006, Krupka and Straubinger 2010). It is 

assumed that in animals, especially in wild animals, the natural tick- and pathogen 

exposure has established a balanced host-parasite relationship in the course of evo-

lution, and that infections usually run subclinically (Skotarczak 2002). Serological 

studies indicate frequent contact of wild living animals with Borrelia (Isogai et al. 

1991, Gill et al. 1993, Juricová and Hubálek 2009). However, the course of infections, 

Figure 2.12: Schematic progression Lyme borreliosis and the corresponding antibody titers. 
Translated and adapted from Dörrschuck et al. (2014). 
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their clinical manifestations and the persistence of the pathogen are largely un-

known (Skotarczak 2002). 

2.3.1.8 Diagnosis 

In human medicine, the detection of specific antibodies against B. burgdorferi s.l. in 

the serum and cerebrospinal fluid is the main diagnostic method (Wilske et al. 

2007). A verifiable infection normally begins with an increase of IgM antibodies af-

ter about 3 weeks and of IgG antibodies after about 6 weeks (Wang et al. 2007). A 2-

stage diagnosis is recommended for the serological detection of Lyme disease. En-

zyme-linked immunosorbent assay (ELISA) or the immune fluorescent antibody test 

(IFAT) is suitable for screening. If one of these tests is positive, an immunoblot is 

widely used as a confirmatory test (Wilske et al. 2007). However, the proof of a Lyme 

disease infection cannot be based solely on serological findings because a negative 

serology does not rule out an acute infection. On the other hand, high IgG antibody 

titers can persist after an earlier subclinical infection over many years (Wilske et al. 

2007). 

A direct proof of B. burgdorferi s.l. infection is made by growing the bacteria on a 

special culture media or by PCR on specific gene sections. The cultivation of Borrelia 

is very time consuming and expensive. Therefore, PCR has become the standard 

method of detection for the diagnosis of an unspecific Borrelia because it reliably 

allows the detection of the bacteria in epidemiological and clinical studies. In recent 

years, different PCR protocols have been developed, enabling the differentiation of 

different genospecies (Baranton and De Martino 2009). The targets are, for example, 

the ospA gene (Rauter et al. 2002), the ospC gene (Wang et al. 1999b) or the spacer 

region between 5S and 23S of the rRNA gene (Rijpkema et al. 1995). The method of 

Rauter et al. (2002) can be employed to determine the clinically most relevant geno-

species (i.e. B. burgdorferi s.s., B. garinii, and B. afzelii) within a single PCR run. 
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2.3.2 Rickettsia spp. 

Rickettsial diseases, also known as rickettsioses, are caused by bacteria of the genus 

Rickettsia within the family Rickettsiaceae. These intracellular bacteria are trans-

mitted by arthropods (Raoult and Roux 1997, Schex 2011). 

2.3.2.1 Historical background 

Some of the oldest known infectious agents belong to the genus Rickettsia, such as 

Rickettsia prowazekii, the pathogen causing epidemic typhus. This disease is sus-

pected of being responsible for the Athens plaque during the fifth century BC (Raoult 

and Roux 1997). In 1899, the first description of the Rocky Mountain spotted fever 

(RMSF) was given (Maxey 1899), while its causative agent, Rickettsia rickettsii, was 

reported some years later in wood ticks (Dermacentor occidentalis) by Ricketts 

(1906, 1909). Definitive evidence that R. rickettsii is maintained by ticks was pro-

vided experimentally by Wolbach (1919). During the 20th century, R. rickettsii was 

considered to be the only Rickettsia species in the Western hemisphere that was 

pathogenic to humans (Parola et al. 2005). Although many other Rickettsia were de-

tected, these were considered as non-pathogenic (Raoult and Roux 1997, Raoult 

2004). In Europe and Africa, R. conorii transmitted by the brown dog tick (Rhipiceph-

alus sanguineus) was considered to be the only agent causing tick-borne rick-

ettsioses (Parola et al. 2005). A similar situation is assumed for R. sibirica in the USSR 

and China, as well as for R. australis in Australia (Raoult and Roux 1997). 

In comparison to classical serology that might have hindered the corrected identifi-

cation of novel spotted fever group (SFG) rickettsioses, the advances in culture sys-

tems and molecular methods have greatly improved the identification process on 

the basis of rickettsial DNA (Raoult and Roux 1997). Since 1984 many new emerging 

tick-borne rickettsial diseases (TBRD) have been identified throughout the world 

(Parola and Raoult 2001, Parola et al. 2005). Moreover, more recent findings in Eu-

rope and Asia on R. helvetica, which has been considered nonpathogenic since its 

discovery in 1974 in Switzerland (Parola et al. 2005), show that this species is also 

pathogenic to humans (Raoult 2004).  
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In summary, highly significant developments have taken place in the field of rick-

ettsiology over the last 20 years, with many previously unrecognized or incom-

pletely described species of unknown pathogenicity being detected in or isolated 

from ticks (Parola et al. 2005). So far, for most representatives only few epidemio-

logical data and only incomplete studies on their life cycle, possible vectors and their 

reservoir hosts exist (Sprong et al. 2009). However, recent developments in rickett-

sial genetics have facilitated our understanding of Rickettsia taxonomy (see Section 

2.3.2.2) and the functional characterization of potential virulence determinants(see 

Section 2.3.2.7) (Sonenshine and Roe 2013a). 

2.3.2.2 Systematics 

Taxonomically Rickettsia are classified into the α-subdivision of the Proteobacteria, 

belonging to the order Rickettsiales (Figure 2.13). This subdivision comprises nu-

merous pathogens of humans and animals, and includes the genera Anaplasma, Ehr-

lichia and Orientia, as well as several bacterial endosymbionts of invertebrates 

(Sonenshine and Roe 2013a). The latter genus contains the scrub typhus rickettsiae 

group, previously known as the tsutsugamushi group (Roux and Raoult 2000). In 

Figure 2.13: Taxonomical overview of the Rickettsia spp. of veterinary or medical interest 
with respect to Germany (cf. Sonenshine 2006, Benson et al. 2009, Schex 2011, Skuballa 
2011, http://www.ncbi.nlm.nih.gov/taxonomy). The 4 Rickettsia groups are the typhus 
group (TG), the transitional group (TRG), the spotted fever group (SFG) and the ancestral 
group (AG). 
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comparison to the other genera, the species within this group lack lipopolysaccha-

ride, peptidoglycan and a slime layer (Walker 1996). 

The assignment of Rickettsia species to different groups has constantly changed with 

increasing knowledge (Roux and Raoult 2000, Lipsker and Jaulhac 2009). Quite re-

cently, the complete sequencing of several rickettsial genomes has provided the ba-

sis for a phenotypic and genotypic classification of Rickettsia species (Raoult and 

Roux 1997). This classification has replaced the classical one, which consisted of 3 

groups (typhus, spotted fever and scrub typhus) based on phenotype and clinical 

signs (Skuballa 2011). Currently, 4 groups are recognized (Sonenshine and Roe 

2013a): (1) the large and strongly heterogeneous SFG containing the agent of RMSF; 

(2) the smaller typhus group (TG), which includes the agent of flea-borne murine 

typhus and louse-borne epidemic typhus; (3) a transitional group, which is based on 

shared characteristics of the TG and the SFG; and (4) an ancestral group (AG) includ-

ing R. bellii and R. canadenesis differing from all other groups (Stothard et al. 1994, 

Pacheco et al. 2011). To date, almost 300 species exist or have been proposed within 

the SFG (Benson et al. 2009). 

2.3.2.3 Morphology and genetic features 

Rickettsiae are gram-negative bacteria that form spores. Most of them are very small 

and have a round to oval shape with a diameter of 0.3 to 0.5 µm and a length of 0.7 

to 2.0 µm (Hackstadt 1996). As shown in Figure 2.14, they consist of a translucent 

zone, called the slime layer, which surrounds a trilaminar cell wall (Silverman et al. 

1978). Only few variants of Rickettsia have been described as filamentous and long-

formed (Sonenshine and Roe 2013a). Rickettsiae live obligate intracellularly and in-

fest endothelial cells in small blood vessels. Because of their strict intracellular 

growth, rickettsiae cannot be cultivated on agar plates or in broth, but only in viable 

eukaryotic host cells (e.g., in cell culture, embryonated eggs, or susceptible animals) 

(Walker 1996). 
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The clinical picture of the two main groups of Rickettsia, the TG and the SFG, is clin-

ically not clearly distinguishable. However, the average genome sizes of the 4 groups 

is different: 1.2 to 1.3 Mb in the SFG, 1.1 Mb in the TG, 1.2 to 1.5 Mb in the AG and 

1.3 to 1.5 in the TRG (Sonenshine and Roe 2013a). Additionally, the groups SFG and 

TG can be differentiated on the basis of the surface protein OmpA which is absent in 

representatives of the TG, and by their vectors (Pérez-Osorio et al. 2008). For R. rick-

ettsii the rOmpA protein appears to play a key role in the initial adhesion to the host 

cells (Li and Walker 1998). On the other hand, it has been demonstrated that the 

rOmpB protein is the immunodominant species of surface protein antigen for most 

of the rickettsiae, particularly of the SFG, underling its importance in rickettsial 

pathogenesis (Roux and Raoult 2000). In this context, it has been shown that rOmpB 

mediates the invasion of mammalian cells (Chan et al. 2009). 

2.3.2.4 Transmission 

The transmission of rickettsial diseases to humans is usually caused by chiggers, 

fleas, lice, mites or ticks (Telford and Parola 2007). For this reason, the geographic 

distributions of rickettsioses strongly depends on the infection rate, distribution 

and biting preferences of the corresponding arthropods. For Rickettsia found in 

Figure 2.14: Electron microcopy image of R. prowazekii, the etiologic agent of epidemic ty-
phus, also showing at detailed view of its outer envelope (from Silverman and Wisseman 
1978). 
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blood-feeding arthropods, e.g. in ixodid ticks, several transmission strategies, such 

as vertical (i.e. transovarial and transstadial), horizontal and mixed transmission, 

have been observed (Sonenshine and Roe 2013a). Transovarial transmission, for ex-

ample, takes place for Rickettsia species that are pathogenic to vertebrates (Azad 

and Beard 1998), so that the pathogen is transmitted from female ticks to the larval 

life history stage. Once an arthropod has been infected with Rickettsia, the bacteria 

travel from the midgut to the salivary glands (Santos et al. 2002), from where the 

infection can be transmitted horizontally to a vertebrate host and thus to other 

blood-feeding arthropods (Sonenshine and Roe 2013a). 

Initial studies have reported that SFG rickettsiae can be transmitted through at least 

12 tick generations via transovarial transmission alone (Burgdorfer and Brinton 

1975). In the case of rickettsiae that are mainly transmitted transovarially, ticks can 

act as reservoir hosts and as vectors of the rickettsial infection (Vitale et al. 1989). 

By this means, vertical pathogen transmission through all life history stages seems 

to maintain the Rickettsia populations when the number of available vertebrates is 

low (Munderloh and Kurtti 1995). Zanettii et al. (2008) observed 100% transovarial 

transmission to all laid eggs, suggesting a coupled growth between SFG Rickettsia 

and tick populations. However, some pairings of SFG Rickettsia and tick species do 

not produces infected offspring (Baldridge et al. 2007). In this context, it is still un-

clear which mechanisms regulate successful transmission (Sonenshine and Roe 

2013a).  

In R. prowazekii, the epidemic typhus agent, a rather unusual form of transmission 

has been observed (Azad and Beard 1998). R. prowazekii is pathogenic to its louse 

hosts generally killing them within few weeks, such that no vertical transmission is 

possible. Conversely, the pathogen seems to be better adapted to vertebrate hosts 

and thus relies on horizontal transmission (Azad and Beard 1998). Unlike the SFG, 

rickettsiae within the TG multiply in their arthropod vectors. They grow inside the 

epithelial cells of the intestinal tract and are excreted in the feces (Perlman et al. 
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2006). Thereafter, infections of humans with R. prowazekii occur via the dermis af-

ter scratching (Raoult and Roux 1997). 

2.3.2.5 Epidemiology 

Rickettsia species are widespread throughout the world. Their occurrence essen-

tially depends the distribution of the vectors. As obligate intracellular bacteria, Rick-

ettsia are transmitted from arthropods to vertebrates through saliva, feces, blood or 

aerosol (Sonenshine and Roe 2013a). 

In Germany at least 7 Rickettsia species occur indigenously: Rickettsia helvetica, R. 

felis, R. monacensis, R. massiliae, R. raoultii, R. aeschlimannii and R. slovaca (Dobler 

and Wölfel 2009, Parola et al. 2013). R. felis is transmitted primarily by fleas, while 

R. slovaca and R. raoultii are primarily disseminated by Dermacentor ticks (Pluta et 

al. 2009, 2010). R. aeschlimannii was detected in Hyalomma ticks collected from sev-

eral bird species (Parola et al. 2013). R. helvetica, R. monacensis and R. massiliae are 

predominantly found in I. ricinus (Simser et al. 2002, Parola et al. 2005), reaching 

prevalences of almost 50% (Milhano et al. 2010). In comparison to arthropods, the 

role that vertebrates play in the epidemiology of Rickettsia and how they contribute 

to their maintenance is little known. Potential reservoir hosts include rodents, lago-

morphs, dogs and deer (Levin et al. 2011). Serological studies and direct detection 

of Rickettsia in tissue samples have shown that wild animals often come into contact 

with Rickettsia spp. (Smetanová et al. 2006, Stefanidesova et al. 2007, Selmi et al. 

2009, Schex et al. 2011, Skuballa 2011, Overzier et al. 2013). 

2.3.2.6 Pathogenesis and clinical symptoms 

Rickettsiae cause human disease around the world (Walker 1996, Sonenshine and 

Roe 2013a). In Europe, particularly in the southern regions, Rickettsia are viewed as 

a growing health problem to humans (Ciceroni et al. 2006). During the years 1998 

to 2002, 4604 clinical cases of MSF were described in Italy alone, of which 33 were 

lethal. The detected agent was mainly R. conorii, the trigger of MSF (Ciceroni et al. 
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2006). Other species such as R. helvetica seem to cause a milder disease in humans 

(Ciceroni et al. 2006, Lipsker and Jaulhac 2009). 

For more than 20 species of Rickettsia a human pathogenic potential has been 

demonstrated (Parola et al. 2005). Depending on the Rickettsia species, the features 

and the course of the disease can range from mild, asymptomatic to life-threatening 

(Parola et al. 2005, Lipsker and Jaulhac 2009). Examples of diseases associated with 

SFG Rickettsia are: Rocky Mountain spotted fever (RMSF) caused by R. rickettsii, 

Mediterranean spotted fever (MSF) caused by R. conorii, Siberian tick typhus (R. 

sibirica), Queensland tick fever (R. australis), Japanese spotted fever (R. japonica), 

Flinders island spotted fever (R. honei), African tick-bite fever (R. africae) and tick-

borne lymphadenopathy caused by R. slovaca and R. raoultii. 

The bacteria enter the human body via the skin, then traverse the blood vessel walls 

and spread though the bloodstream. This spreading causes infection of the endothe-

lium and more seldom the vascular smooth muscle cells. Rickettsia enter the cells of 

their host and reproduce by binary fission in the cytosol, thus damaging heavily par-

asitized cells directly (Walker 1996). Consequently, this behavior causes hyper-

plasia of the endothelial cells and thrombus formation leading to obstruction of 

blood flow and the escape of red blood cells into the surrounding tissue. This leads 

to a distinctive punctate bleeding from the fine capillaries in the skin or the mucous 

membranes (Kimmig et al. 2010). When inflammatory cells follow into the tissue 

papules can develop. The typical clinical sign of rickettsial infections, the eschar, is 

caused by necrosis in the center of the papule. 

2.3.2.7 Diagnosis 

The clinical diagnosis of rickettsioses can be difficult, because of the rather unspe-

cific symptoms (e.g. fever, headache, nausea, vomiting, muscle aches, rash). Alt-

hough infections can be diagnosed by serological assays, IgM and IgG antibodies that 

are reactive with Rickettsia could be hardly detectable during the first week of ill-

ness (Paddock et al. 1999). Immunofluorescence assays are not suited to distinguish 
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between the Rickettsia species because of the existence of a strong antigenic cross-

reaction between the SFG and the TG (Ormsbee et al. 1978). Additionally, other se-

rodiagnostic tools are available, such as the Weil-Felix test, complement fixation 

(CF) test, microagglutination, latex agglutination, ELISA and Western immunoblots 

(La Scola and Raoult 1997). 

A more sensitive and specific diagnosis of rickettsial infections can be achieved 

through molecular analysis techniques. The analyzed material can be a tissue sam-

ple from an eschar or from any other possibly infected organ. For detection of rick-

ettsial DNA there are several commonly used genes, such as the citrate synthase 

gene (gltA), the 16S rRNA gene, the genus specific 17-kDa antigen gene and the par-

tial outer membrane proteins A (ompB) and B (ompA) (Reif and Macaluso 2009). 

2.3.2.8 Rickettsia helvetica 

In 1979 this pathogen was discovered in the Switzerland (Burgdorfer et al. 1979) 

and its original name "swiss agent" was proposed. This name was converted by Beati 

et al. (1993) into R. helvetica. I. ricinus seems particularly involved in the epidemiol-

ogy of R. helvetica over the entire European continent (Hartelt et al. 2008) including 

France, Germany, Italy, Portugal, Slovenia, Spain and Sweden (Sanogo et al. 2003, 

Fernández-Soto et al. 2004, Goodman et al. 2005, Oteo et al. 2006, Wölfel et al. 2006, 

Dobler and Wölfel 2009), and in the north-west of Russia (Movila et al. 2011). Addi-

tionally, it has been shown that the distribution of R. helvetica could extend even 

further, since Rickettsia isolates from I. ovatus, I. persulcatus, and Ixodes monospi-

nosus ticks collected in Japan had a close resemblance with R. helvetica (Fournier et 

al. 2002).  

So far, insufficient information is available about the participation of other types of 

ticks in the epidemiology of R. helvetica. Hornok et al. (2010) noted that not I. ricinus, 

but Haemaphysalis inermis has the biggest vector potential for R. helvetica in their 

study area in Hungary. In Croatia, R. helvetica was detected in 10% of Dermacentor 

reticulatus (Dobec et al. 2009). 
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Our current state of knowledge about possible reservoir hosts is still very incom-

plete. Epidemiological studies have shown that migratory birds represent reser-

voirs for R. helvetica and that they can spread infected ticks over long distances, even 

onto islands (Elfving et al. 2010, Franke et al. 2010). Other vertebrate animals, in-

cluding lizards, also possess reservoir competence (Tijsse-Klasen et al. 2011). 

Sprong et al. (2009) have found R. helvetica in the blood of mice, roe deer and wild 

boar. 

R. helvetica was considered non-pathogenic to humans for about 20 year after its 

discovery. However, in Sweden R. helvetica was suspected of being involved in a case 

of fatal perimyocarditis in a young patient (Nilsson et al. 1999), a case of sarcoidosis 

(Nilsson et al. 2002), as well as a cases of febrile illness in France (Fournier et al. 

2000, 2004). The latter infections were present during summer with fever, head-

ache, arthralgia and myalgia but without any signs of a cutaneous rash (Fournier et 

al. 2004). Only quite recently, the human pathogenic potential, which has long been 

suspected, was confirmed by direct isolation of the pathogen from a patient with 

clinical signs of meningitis (Nilsson et al. 2010). However, there are only individual 

descriptions of human infections with different symptoms, so that there is currently 

no uniform picture of a disease (Fournier et al. 2000, Nilsson 2009). The extent to 

which the disease appears in animals is currently also unknown (Boretti et al. 2009). 
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3  
Material and methods 

3.1 Sampling methods 

The collection of samples was carried out from August 2011 to February 2014 dur-

ing periods of perennial hunting activity. Roe deer and wild boar were culled from 

January to October by hunting from a hide and from November to January by driven 

hunts. For each sample, the acquisition date was recorded and the sample was as-

signed to one of the following six sampling periods: January/February (Jan/Feb), 

March/April (Mar/Apr), May/June (May/Jun), July/August (Jul/Aug), Septem-

ber/October (Sep/Oct) and November/December (Nov/Dec). 

3.1.1 Sampling area 

The study took place in the Bienwald, a 10,275 ha state forest which is located in the 

southwest of the federal state of Rhineland-Palatinate in Germany (see Figure 3.1). 

The area is an irregular triangle lying between 48°59’0”N, 8°0’0”E and 49°7’0”N, 

8°16’0”E (UTM) bordering France to the southwest along the river Lauter. The alti-

tude ranges from 105 m above sea level in the north to 130 m in the west. The Bien-

wald is the largest coherent forest area of the Upper-Rhenish Lowlands where it lies 

on an alluvial fan landscape with numerous streams. Due to the geology of the Bien-

wald, there are also low hills ranging from 135 m a.s.l. at the border in the north, up 

to 152 m in the east. These consist of alluvially deposited dune sands (Rheinland-

Pfalz Landesforsten 2015). Especially during winter, the soils in the west are rela-
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tively wet, which is why the forest area is streaked by numerous channels for drain-

age into western tributary rivers of the Upper Rhine. During summer, many of these 

channels dry out but some also carry water throughout the year. In particular, dur-

ing summer 2013 exceptionally high rainfall caused many parts of the western Bien-

wald to become waterlogged throughout the year. 

Because of the small-scale habitat variation, sites of wet and dry, poor and rich soils, 

the area provides a wide variety of biotope patches. The vegetation of the Bienwald 

forest is composed of meadow forests (Alnus glutinosa), European ash (Fraxinus ex-

celsior), oaks (Quercus robur, Quercus petraea and Quercus rubra), common beeches 

(Fagus sylvatica), hornbeams (Carpinus betulus) and pines (Pinus sylvestris). Pines 

dominate (56%) on the poor sand soils of the talus river fans and occupy 48% of the 

whole forest area, whereas deciduous trees amount to 44%, especially oaks with 

25%. Although the forest is mainly used for forestry, the area also contains undis-

turbed biotopes. 

Figure 3.1: Map of the sampling area, the Bienwald, a 10275 ha state forest in Rhineland-
Palatinate, Germany. The image was generated with ArcMap 10.2.1 (by ESRI) from data pro-
vided by the Office for Surveying and Geographic Information (Landesamt für Vermessung 
und Geobasisinformation), Rhineland-Palatinate, Germany. 
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The Bienwald is inhabited by roe deer and wild boar, but red deer cannot be consid-

ered as a permanent resident of the local fauna since only very few occasional sight-

ings have been reported. Recent estimations of the roe deer population density 

show an average of 6.0 animals per ha (Ehrhart 2012) with a distinctly increasing 

trend over the last decade (see Figure 3.2). To date, density estimations for the wild 

boar population in the Bienwald have not been conducted and the high variance in 

the hunting bags does not allow the identification of a clear population trend (see 

Figure 3.2). However, the numbers of culled wild boar in Rhineland-Palatinate have 

shown a vast increase over the last 30 years (see Section 2.1.2.2). 

3.1.2 Hosts samples 

For the studies presented in this thesis, organ samples were collected from roe deer 

and wild boar (see Figure 3.3). Collection occurred during the disembowelment of 

the animals no later than 60 min after the animal died. Tissue samples from the skin 

of the ear tip, heart, lung, diaphragm, liver, spleen, kidney, and urinary bladder, hav-

ing a size of roughly 5 mm × 5 mm × 5 mm were collected. All organ samples were 

stored in Eppendorf tubes and cryopreserved at -70 °C. Each of the tubes was 

marked with the ear tag, which assigned a unique number to each animal, and an 

Figure 3.2: Numbers of roe deer and wild boar culled in the Bienwald between 2004 and 
2014 during all hunting activities. Data from Forstamt Bienwald, 2014, pers. comm. 
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abbreviation for the organ it contained. Moreover, from each animal two blood sam-

ples were collected, one in a serum tube and the second in an ethylenediaminetet-

raacetic acid (EDTA) tube, both labeled with the according ear tag. The blood sam-

ples have also been cryopreserved at -70 °C and are available for future investiga-

tion. 

For each culled animal, the date of its sampling, its ear tag, species, sex, body mass 

and age were determined and recorded. This affords inter alia the possibility of 

drawing conclusions about the condition of the game animals. Body mass resulted 

from the measurement of the animal’s carcass including the head without blood and 

with the intestines removed. It was measured no later than 1 hour after culling. Age 

was ascertained by analysis of the skulls and the individual dental abrasion, i.e. tooth 

wear (cf. Mysterud and Østbye 2006a). The animals were grouped into three classes: 

(1) game younger than 1 year, (2) yearlings and (3) individuals older than 2 years 

(adults). Additional data referring to high infestation with other ecto- and/or endo-

parasites, e.g. deer ked (Lipoptena cervi) and lungworm (Metastrongylus apri), obvi-

ous injuries, pregnancy and status of lactation for female individuals were recorded. 

Figure 3.3: Sample acquisition during driven hunts. Information on ticks, hosts and patho-
gens for hunters (left) as well as organ and tick sampling from wild boar (center) and roe 
deer (right). 
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All data was directly recorded on a form at the time of the sample acquisition. The 

form used for this purpose is provided in Appendix A. 

3.1.3 Tick collection 

Roe deer and wild boar were examined by palpation for ticks using latex gloves and 

fine forceps (Figure 3.4). Ticks were preferably removed directly after culling, but 

at the latest 60 min after the death to avoid effects of tick migration from the dead 

hosts. Hence, refrigerated bodies were excluded from the examination. Removed 

and loose ticks were stored directly in 70% ethanol in Eppendorf tubes. However, 

when tick infestation was very high, loose ticks were collected and preserved in eth-

anol before removing the organs and/or organ parts (e.g. skin and ears) entirely (see 

Figure 3.4). The highly tick infested skin parts and organs were stored in polythene 

Figure 3.4: Tick collection from roe deer. Heavily infested skin areas were removed entirely 
with knife or scalpel (top, Pictures: Senta Verena Muders). Engorged ticks (bottom) were 
predominantly found on roe deer (see Section 4.1.1) (bottom left, Picture: Senta Verena 
Muders; bottom right, Material: Senta Verena Muders, Picture: Prof. Dr. Urs Wyss, Kiel) 
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bags and frozen at -20 °C. After removing all ticks from the cryoconservated skin 

and organs, the ectoparasites were also stored in 70% ethanol. In addition to this, at 

least two people swept the whole body of each animal for ticks, such that the prob-

ability of overlooking ticks was reduced as far as possible. 

The body of the game animals was divided into regions numbered from 1 to 8 to 

facilitate the determination of preferred attachment sites of ticks. As displayed in 

Figure 3.5a and Figure 3.5b for roe deer and wild boar, respectively, the 8 regions 

have been defined as follows: (1) ears, (2) head, (3) neck, (4) main body, i.e. torso, 

(5) both front legs, (6) hind legs, (7) sternum including armpit and (8) abdomen 

with groin. All ticks were sorted in accordance with the body region on which they 

were found. The ticks from different body parts were preserved in separate tubes, 

which were labeled with the corresponding number of the attachments site and the 

ear tag of the host animal. Moreover, for each host the body regions that were in-

fested by ticks were directly recorded on the sampling form (see Table A.1). 

(b) (a) 

Figure 3.5: Schemata of (a) roe deer and (b) wild boar to record tick location and to detect 
body regions preferred by ticks and different tick life history stages. Parts of the whole game 
corpus are numbered from 1 to 8. The regions 7 and 8 include armpit and groin, respec-
tively. 
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Afterwards, ticks were microscopically examined in the laboratory and determined 

to species, stage of development, sex, status of mating and engorgement. Species 

and age of the collected ticks was determined using the identification key of Hillyard 

(1996) The amount of engorgement of the ticks was classified into five levels (0 = 

loose and unengorged, 1 = attached and unengorged, 2 = attached and little en-

gorged, 3 = attached and medium engorged, 4 = attached and fully engorged).  

3.1.4 Climate 

The mean annual rainfall in the Bienwald is between 680 and 700 mm (during the 

growing season from beginning of May to end of October: between 330 and 

380 mm), and the average annual temperature is 10 °C (during the growing season 

16.5 °C). Climatic data were recorded during the sampling period for every hunting 

day. This was provided by the German Meteorological Service (Deutscher Wetter-

dienst), and included cloud coverage (ranging from 1 to 8, whereby 1 = slight cover-

age and 8 = high coverage), relative humidity [%], air pressure [hPa], wind speed 

[m/sec], precipitation depth [mm], sunshine duration [h], snow height [cm], mini-

mum air temperature 5 cm above the ground [°C], as well as minimum, maximum 

and mean daily air temperature 2m above the ground [°C]. All of this information 

was acquired at weather station number 4177 in Rheinstetten, Germany, which is 

located close to the Bienwald. From the daily mean air temperature (T) and the daily 

mean relative humidity (RH) the saturation deficit was calculated in accordance 

with Randolph and Storey (1999) and Perret et al. (2000) by the following empirical 

formula: 

𝑆𝐴𝐷 = (1 − 𝑅𝐻/100) ∙ 4.9463 ∙ 𝑒0.0621 ∙ 𝑇, 

where SAD reflects the saturation deficit in millimeters of mercury, while T and RH 

are given in degree Celsius and percent, respectively. The saturation deficit is a 

measure of the drying power of the atmosphere (Randolph and Storey 1999, Perret 

et al. 2003). The precipitation depths and the average air temperatures for each 

sampling period are depicted in Figure 3.6.  
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3.2 Microbiological methods 

The Sections 3.2.1 to 3.2.4 provide a general introduction to microbiological meth-

ods (i.e. nucleic acid extraction, polymerase chain reaction, agarose gel electropho-

resis, and sequencing). Sections 3.2.5 and 3.2.6 describe the specific analyses that 

were used for Borrelia and Rickettsia detection. A detailed overview of the devices 

used and consumables is given in Appendix C, while the solutions and buffers used 

are listed in Appendix D. 

3.2.1 Nucleic acid extraction from organ samples 

The DNA isolation from organ samples was carried out using Maxwell® 16 Tissue 

DNA Purification Kits (Promega, Madison, WI, USA) with an automated DNA extrac-

tion device, the Maxwell® 16 system (Promega, Madison, WI, USA). This system con-

sists of the pre-programmed device and prefilled reagent cartridges, which contain 

all required elements for nucleic acid extraction (i.e. prefilled buffers) as well as 

MagneSil® paramagnetic particles (PMPs). The silica particles are negatively 

charged quartz crystals, i.e. silicon dioxide (SiO2) (Herrmann 2012a). The principle 

is based on the release of nucleic acids from the sample using a lysis buffer with high 

salt concentration, i.e. guanidine isothiocyanate. The high salt concentration and the 

low pH-value causes a reversible binding of DNA/RNA with the negatively charged, 

magnetic silica particles. Existing polysaccharides and proteins are unable to bind 

to the silica particles and are removed by repeat cleaning (i.e. washing) steps using 

a washing buffer with high salt concentration. At the end of the extraction, DNA/RNA 

Figure 3.6: Average air temperature (line plot) and precipitation depth (bar plot) for each 
sampling period of the study. 
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is dissolved from the PMPs by the use of an elution buffer with a low salt concentra-

tion and is present in solution (Herrmann, 2012a, unpublished; Skuballa, 2011). 

A reagent cartridge of the Maxwell 16 system has 7 wells (see Figure 3.7). In a single 

run 16 samples can be processed simultaneously. The first well contains the lysis 

buffer and the sample material, which is crushed and dissolved by a magnetic 

plunger. Thereafter, PMPs (MagneSil®) inside the second well bind to the plunger 

and are transferred to the first well, such that the DNA can bind to the particles. After 

the PMPs have bound the source material, the plunger transfers the samples into the 

other wells of the cartridge (wells 3 to 7) for lysis and cleaning to remove bound 

contaminants (Herrmann 2012a). The purified and isolated DNA is transferred into 

an elution vial, which contains the elution buffer, a buffer with low salt concentra-

tion. Before the start of the purification, 250 µl of the elution buffer was prepared in 

the elution vial. Due to heating and the low salinity of this buffer, the DNA is again 

released from the silica particles. Then, the isolated DNA can be transferred into 

prepared 0.5 ml Eppendorf tubes. Traces of the black silica particles in the purified 

samples do not affect the following reactions (Herrmann 2012a). However, the elu-

ates were centrifuged at 5 °C for 3 min with 16,000 g to keep these residues as low 

Figure 3.7: Maxwell® 16 DNA Purification Cartridge (left): well 1 contains the lysis buffer 
and the sample, well 2 contains the MagneSil® particles and wells 3 to 7 contain washing 
buffers. Sterile workbench (right) used to cut and transfer organs samples (2×2×2 mm) into 
the cartridges. 
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as possible, before they were analyzed by PCR or cryopreserved at -70 °C. The entire 

purification process took about 45 min. 

For the extraction of Borrelia spp. and Rickettsia spp. DNA two pools of tissue sam-

ples per animal were investigated. One pool contained a part (2×2×2 mm) of the skin 

(i.e. the ear), while the other consisted of tissue pieces (2×2×2 mm) from the heart, 

lung, diaphragm, kidney, liver, urinary bladder and spleen. Cutting of the tissue sam-

ples was performed under sterile conditions (see Figure 3.7). The first pool was de-

noted as P1 and the second pool as P2. A single cartridge was used per pool. Since 

the maximum inserted tissue material should not exceed 50 mg according to the 

manufacturer's instructions, the 2×2×2 mm tissue pieces of the pooled organ sam-

ples were finely crushed using a plastic pestle before they were inserted into the 

cartridges.  

3.2.2 Nucleic acid extraction from tick samples 

Ticks were investigated individually and homogenized in phosphate buffered saline 

using the NucliSENS® easyMag® system (bioMérieux Inc., Durham, NC, USA) to ex-

tract bacteria DNA. By the automatic addition of a chaotropic buffer, the lysis buffer, 

nucleic acids are released and are able to precipitate onto magnetic silica particles. 

Then, several cleaning steps take place to remove polysaccharides and proteins, as 

well as bonded impurities. For this step extraction buffers are used. Finally, the silica 

particles and the DNA are separated by an elution buffer of low salinity (Herrmann, 

2012b, unpublished). 

During the DNA purification by silica particles using the easyMag® system up to 24 

samples can be processed simultaneously in three specimen strips with each having 

eight individual sample vessels. The device detects how many samples need to be 

processed using a barcode (Herrmann, 2012b). From the supernatant of the homog-

enized tick samples 100 µl was pipetted into the vessels and introduced into the 

easyMag®. After the barcodes were scanned, a new run was created specifying the 

sample type, the amount of inserted sample material (100 µl), and the desired 
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amount of eluate (50 µl), as well as a caption for each sample. Then, the lysis buffer 

was automatically added to the samples. Meanwhile, the silica particles were pre-

pared and diluted with nuclease-free H2O with a ratio of 1 to 2, such that for 8 sam-

ples 550 µl silica and 550 µl H2O are needed. After lysis, 8 times 125 µl of the silica 

solution was prepared in a microtiter plate using the electronic Biohit eLINE® pi-

pette (Biohit Oyj, Helsinki, Finland) programmed for the easyMag®. Then, 100 µl 

were recorded with each of the 8 tips of the pipette, transferred into the sample-

lysis mixture and mixed (Herrmann, 2012b). Once the silica particles were added to 

the sample the purification could start and run in accordance with the principle de-

scribed above. Finally, the eluates were transferred into prepared 0.5 ml Eppendorf 

tubes and centrifuged at 5 °C for 3 min with 16,000 g before they were analyzed by 

PCR. 

3.2.3 Polymerase chain reaction 

The polymerase chain reaction (PCR) was applied to detect infections of the B. 

burgdorferi s.l. complex and of Rickettsia spp. in the organ and tick samples. PCR 

replicates in several steps specific nucleic acid sequences that exist only in small 

quantities within the sample. For the PCR a sequence-specific, complementary oli-

gonucleotide pair (forward and reverse primer), a thermostable DNA polymerase 

and a mix of the 4 nucleotides, adenine (A), thymine (T), guanine (G) and cytosine 

(C) are required. The primers have a length of 16 to 24 base pairs and are selected 

such that the target sequence is located between them. The PCR is performed in a 

thermocycler, which is able to change the temperature of the reaction block very 

quickly. Different temperatures are necessary to denature the DNA (formation of 

single-stranded DNA at 95 °C), then to allow the accumulation of the primers (an-

nealing at 50-65 °C), and finally to ensure the elongation of the primers along the 

DNA matrix to a new daughter strain (temperature optimum of DNA polymerase at 

72 °C). During annealing the forward primer binds to the 5‘ end of the single-

stranded DNA (ssDNA, while the reverse primer attaches to the 3’ end of the ssDNA. 

The 3-step procedure (denaturation, annealing and elongation) represents a so-

called PCR cycle and is repeated 30 to 40 times. During each cycle, the DNA section 
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between the primers doubles ideally, such that the obtained products are exact cop-

ies of the originally targeted DNA section. The cyclic repetition results in an expo-

nential increase of DNA fragments (2𝑛, where 𝑛 is the number cycles), whereby the 

overall reaction process takes about 1 to 2 hours. By means of this method, even the 

slightest traces of DNA can be detected and made accessible for diagnostic purposes.  

In addition, the sensitivity and specificity of a PCR can be increased through a so-

called nested PCR, which consists of 2 nested PCR responses. In the first run of the 

PCR a large product is formed, which is used as a template for the second run. The 

second PCR then reproduces a DNA sequence, which lies within the amplification 

product of the first PCR. The primers of the second PCR are chosen so that they lie 

completely within the first amplification product. One speaks of a semi-nested or 

half nested PCR, when only one primer of the second reaction lies within the ampli-

fied region and a primer of the first reaction is reused during the second run. 

However, the high sensitivity of the PCR induces a large risk of contamination. To 

avoid contamination, all PCRs were carried out in compliance with the following 

safety aspects: 

 The DNA preparation, the creation of the PCR master mix, the addition of puri-

fied DNA to the individual PCR vessels and the implementation of the PCR were 

carried out spatially separated.  

  All pipetting steps were carried out on a sterile workbench with sterile pipettes. 

 Overnight, the work areas were irradiated by UV light to destroy any residual 

DNA.  

 To minimize false-positive results all tests included negative controls (NCs) con-

sisting of sterile H2Obidest that was treated in the same way as the samples.  

 Each test run included at least one positive control (PC). 
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3.2.4 Real-time PCR 

Another reproduction method for nucleic acids is the real-time PCR (RT-PCR) or 

real-time quantitative PCR. These methods are based on the principle of conven-

tional PCR, but allow the detection of positive samples during the PCR run through 

fluorescent dyes. This eliminates the detection of PCR products using gel electro-

phoresis and reduces the risk of contamination. Another advantage of real-time PCR 

in comparison to PCR on the thermocycler is the shorter detection times and thus 

the time saving. There exist different fluorescence detection systems. One way for 

the detection of PCR products is the use of DNA intercalating dyes (e.g. SYBR Green 

or ethidium bromide). In addition, sequence-specific probes marked with fluores-

cent dyes can be used. These exploit the energy transfer between 2 fluorophores, 

known as fluorescence resonance energy transfer or Förster resonance energy 

transfer (FRET). The following sections will explain the use of various fluorescent 

probes using the LightCycler® (Roche Diagnostics, Mannheim, Germany). 

3.2.4.1 Real-time PCR using the LightCycler® 

In contrast to conventional PCR, on the LightCycler® the PCR reaction takes place in 

glass capillaries (length: 45 mm; diameter: 1.55 mm), which are transported by a 

step motor, are translucent, allow a uniform temperature distribution, as well as 

higher heating and cooling rates, and thus shorten the overall reaction time. The 

template DNA is prepared with the PCR master mix in the capillaries, which reside 

in a ring, the so-called carousel. In the LightCycler® 32 samples can be examined 

simultaneously. In addition to the primers, sequence-specific fluorescence-labeled 

probes are used, which hybridize with the PCR products. The detection of the PCR 

products is not carried out by visualization of PCR fragments on an agarose gel, but 

by means of fluorescence, which is measured after each cycle and is dependent on 

the amount of product formed. The fluorescence measurement uses a system of fil-

ters and mirrors with a photometric diode and is carried out at a wavelength of 530 

nm. The total procedure is a one-phase PCR, whereby the risk of contamination is 

significantly reduced by eliminating the gel electrophoresis. Another advantage of 
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the LightCycler® is that the formation of the PCR products can be directly traced on 

the connected computer display (Skuballa 2011) and thus allows relatively quick 

sample diagnosis. The analysis of the PCR is based on threshold cycle (𝐶𝑇). This 

value specifies the first reaction cycle, after which the fluorescence significantly 

raises above the background value (Applied Biosystems 2010). 

The sequence-specific fluorescence detection method used for the visualization of 

the amplification employs probes that are marked with fluorescence dyes. Fluores-

cent probes are sequence-specific and complementary to the target sequence. 

Therefore, non-specific amplificates are not detected. There exist different types of 

FRET probes, such as hybridization probes and TaqMan® probes. 

3.2.4.2 Hybridization probes 

The two fluorescent dyes of hybridization probes are separated onto two different 

oligonucleotides: (1) the donor probe, also known as the anchor probe and (2) the 

acceptor probe, also called the sensor probe. They bind during the annealing phase 

to the complementary strand of the PCR product formed between the primers. Sam-

ples containing the target sequence, bind anchor and sensor probe in close proxim-

ity (distance ≤ 5 base pairs). Upon excitation from a light source, the sensor probe 

emits a light signal of 530 nm that stimulates the dye of the anchor probe and leads 

to the emission of a second signal (640 or 705 nm), which is measured by the detec-

tors of the LightCycler®. The FRET can only take place when the binding of the 

probes occurs in close proximity (see Figure 3.8). This prevents the stimulation of 

Figure 3.8: Reaction process of hybridization probes. Donor and acceptor hybridize to adja-
cent regions on the target DNA in close proximity (top). During FRET, the donor is excited 
by an external light source, its energy is transferred to the acceptor and the excited acceptor 
emits light, which can be detected and measured (bottom). Image from www.eurofinsge-
nomics.eu, 2015. 
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free probes and thus an incorrect determination. Since more amplificates are pro-

duced with increasing number of cycles, more probes can bind and the fluorescence 

intensity increases proportionally to the amount of the resulting PCR product. Fluo-

rescence measuring is performed at the end of the annealing step of each PCR cycle. 

Hybridization probes can also be used for genotyping of samples that are marked 

with different fluorescent dyes. 

3.2.4.3 TaqMan® probes 

TaqMan® probes (see Figure 3.9), also known as hydrolysis probes, provide a way 

to detect only a specific DNS product during the PCR. They are short pieces of DNA 

that hybridize with a middle region of the template DNA. TaqMan® probes have a 

reporter fluorescent dye (R) (equivalent to donor fluorochromes) on one end and a 

Figure 3.9: Reaction process of the TaqMan® probe. The probe is bound to the target DNA 
and is separated by the exonuclease activity of the Taq polymerase (Polymerization/Strand 
displacement), quencher and reporter are separated (Cleavage) and the fluorescence of the 
reporter can be measured by the LightCycler® (Polymerization completed). Image from 
Applied Biosystems (2010). 
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quencher (Q) on the other end. Quencher are molecules that intercept the fluores-

cence of dyes in their vicinity. In addition to its polymerase activity, the Taq poly-

merase of the PCR premix has a 5'-3' exonuclease activity making the breaking down 

of the TaqMan® probes possible. Once the polymerase cleaves the probe bound to 

the target sequence during the synthesis of the complementary strand on the 5' end, 

the quencher and reporter move away from each other, so that the reporter is able 

to fluoresce freely. The fluorescence, which depends on the amount of amplification 

product, is measured by the detectors of the LightCycler®. The fluorescence meas-

urement takes place at the end of the elongation phase (Holzapfel and Wickert 

2007). By this means, the fluorescence of the reporter is only measurable when the 

polymerase has actually copied the desired DNA strand. Each released molecule of 

reporter dye corresponds to a produced DNA strand and therefore can be employed 

to measure the amount of copied DNA. Consequently, TaqMan® probes allow the 

detection of amplificates as well as their quantification. 

3.2.5 Specific detection of Borrelia spp. 

For specific detection of B. burgdorferi s.l. in tissue 2 different PCR systems were 

used. For the first analysis a LightCycler® PCR (LC-PCR) was carried out targeting 

the ospA gene (OspA-PCR) (Rauter et al. 2002). A more time-consuming and more 

sensitive semi-nested PCR based on the method of Rijpkema et al. (1995) targeting 

the spacer region between 5S and 23S rRNA (5S23S rDNA-PCR) was carried out on 

the on the GeneAmp® thermocycler to verify positive LC-PCR results. The amplifica-

tion products were investigated by gel electrophoresis in an agarose gel. For the 

negative control (NC) nuclease-free water and for the positive control (PC) a dilution 

of B. burgdorferi s.l. was used. Ticks samples were investigated for Borrelia spp. us-

ing only the LightCycler® method. Due to financial limitations, the Borrelia genospe-

cies was not determined for any of the samples. 

3.2.5.1 OspA-PCR on the LightCycler® 

The OspA-PCR uses hybridization probes to detect B. burgdorferi s.l. (Rauter et al. 

2002) and was applied to all samples in the present work. After denaturation of the 



 Materials and Methods - Microbiological methods 

 85 

double-stranded DNA to single strands, the forward primer (OspA ilC), which is 

marked with a LC red 640 probe (anchor probe), and the reverse of primer (OspA 

as) accumulate on the complementary sequences during the annealing phase (see 

Figure 3.10A). The polymerase will then synthesize the complementary strands. The 

sensor probe (Probe Ba2) is labelled with fluorescein and has its target sequence in 

the immediate vicinity of the anchor probe. During the following cycles of the PCR, 

the presence of Borrelia DNA leads to a spatial convergence of the sensor probe to 

the DNA strands that have been marked with LC red 640. The LC red 640 dye emits 

light at a wavelength of 640 nm, which is detected by the LightCycler® (see Figure 

3.10B). The fluorescence signal is measured at the end of each annealing phase and 

increases with the PCR product formation in an exponential way (cf. Section 3.2.4.2).  

Primers and probes of the OspA-PCR are given in Table 3.1. The corresponding pi-

petting scheme and the temperature profile are shown in Tables 3.2 and 3.3, respec-

tively. MgCl2, H2O, and the enzyme mix were taken as components of the Light-

Cycler® DNA Master HybProbe kit (LC-Kit). The prefabricated enzyme mix includes 

a DNA polymerase (Taq), a reaction buffer, 10 mM MgCl2 as well as a dNTP mix with 

dUTP instead of dTTP. 

Figure 3.10: OspA-PCR primer and probe in the LightCycler®. The forward primer (OspA 
iLC) labeled with LC Red 640 and the fluorescein-labeled probe (Probe Ba2) bind to the first 
DNA strand. Their proximity induces LC Red 640 fluorescence by FRET. Adapted from 
Rauter et al. (2002). 
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This PCR protocol also allows the detection of several species of the B. burgdorferi 

s.l. complex by the creation of a melting curve following the amplification of the PCR 

product (Rauter et al. 2002, Skuballa 2011). However, Borrelia infections were not 

determined up to the genospecies in this thesis. 

3.2.5.2 Semi-nested 5S23S rDNA-PCR 

Extracted DNA from organ pools that positively during the LC-PCR were tested by 

5S23S rDNA-PCR on the thermocycler in accordance with (Rijpkema et al. 1995) to 

avoid false positives. The target sequence of this semi-nested PCR is the intergenic 

spacer 2 (IS2), which is located between the 5S rRNA gene and the 23S rRNA gene. 

The first PCR run uses the forward primer 23SN1 and the reverse primer 23SC1 to 

Table 3.2: Pipetting scheme of the 
OspA-PCR for Borrelia spp. 

Reagent Amount 

H2O 8.8 μl 

OspA as (5 pmol/µl) 2 μl 

OspA ilc (10 pmol/µl) 1 μl 

OspA Ba2 (10 pmol/µl) 1 μl 

MgCl2 (25 mM) 3.2 μl 

Enzyme mix (from LC-
Kit) 

2 μl 

Sample DNA 2 μl 

Total 20 μl 

 

Table 3.3: Temperature profile of the OspA-PCR for 
the detection of Borrelia spp. 

 Temp. 
(°C) 

Time 
(sec) 

Temp. 
change 

(°C/sec) 

No. 
cycles 

Denaturation 

 95 30 20 1 

Amplification 

Denaturation 95 1 20 60 

Annealing 57 10 20 60 

Elongation 72 13 20 60 

Cooling 

 40 30 20 1 

 

Table 3.1: Primers and probes of the OspA-PCR on the LightCycler® for Borrelia spp. 

Primer / Probe Sequence (5’ to 3’) 

forward primer & probe OspA iLC 5`-AgCCTTAATAgCATgYAAgCAAAA®X`Tg-3` 

reverse primer OspA as 5`-CTAgTgTTTTgCCATCTTCTTTgAAAA-3` 

probe OspA Sensor Ba2 5`-gCgCTgTTTTTTTCATCAAggCTgCTAAC☼X-3` 

®X‘=LC Red 640-labeled base. ☼X= fluorescein-labeled base 

 



 Materials and Methods - Microbiological methods 

 87 

amplify a relatively long DNA piece of 380 bp, which is used as a source for the sec-

ond run. The second PCR used the forward primer 23SN2, which is indented by 

128 bp, and the reverse primer 5SCB (Table 3.4). The resulting PCR product has a 

length of 226 bp (Skuballa 2011). To each PCR run prepared DNA of the Borrelia 

strain B31 was added as positive control. This method has been applied by Oehme 

et al. (2002). 

To prevent contamination with the amplificates of the nested PCR, the dUTPs were 

partially replaced by dNTPs. In the first cycle of the nested PCR a digestion step with 

uracil-DNA glycosylase (UDG) was integrated upstream. This enzyme causes inter-

faces on the DNA with the built-in uracil. As a result, the DNA which has built-in 

dTTPs instead of dUTPs can no longer by amplified. The pipetting schemes and tem-

perature profiles are presented in Tables 3.5 and 3.6, respectively. 

3.2.5.3 Detection of PCR products in Agarose gel 

An agarose gel electrophoresis was used to detect the PCR amplification products 

obtained on the thermocycler. The amplificates are separated in an electric field ac-

cording to their base size. Therefore, the amplified DNA is applied to a gel situated 

in an ionic buffer solution. The separation of the DNA occurs in an electrophoresis 

chamber, where the negatively charged, double-stranded DNA (dsDNA) fragments 

move in the electric field to the positive pole. The separation was carried out at a 

voltage of about 90 V for approximately 30 min. The differing movement of the DNA 

fragments through the agarose gel, which acts like a sieve, depends on the size of the 

molecules. The smaller the nucleobases are, the faster they move through the pores 

Table 3.4: Primers of the semi-nested 5S23S rDNA-PCR for the detection of Borrelia spp. 

Primer / Probe Sequence (5’ to 3’) 

forward primer 1st PCR run 23SN1 5’-ACCATAGACTCTTATTACTTTGAC-3’ 

reverse primer 1st PCR run 23SC1 5’-TAAGCTGACTAATACTAATTACCC-3’ 

forward primer 2st PCR run 23SN2 5’-ACCATAGACTCTTATTACTTTGACCA-3’ 

reverse primer 2st PCR run 5SCB 5’-GAGAGTAGGTTATTGCCAGGG-3’ 
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of the gel. Thus, larger fragments remain closer to the top of the gel. The in-gel eth-

idium bromide (EthBr) intercalates with the double strands of DNA making possible 

their detection by excitation with ultraviolet (UV) light.  

This allows the detection of single DNA fragments by fluoresces when the EthBr is 

exited with UV light. In addition to the PCR products, a defined marker (100 bp lad-

der) was applied to compare the DNA fragments with the length standard. The 

marker contains an 800 bp fragment with twice the intensity of the other bands. The 

bottom line is located at a size of 100 bp. In a 1.5% agarose gel 20 bands with a step-

size of 100 bp emerge. Consequently, a precise determination of the size of DNA 

fragments between 100 and 2000 bp length is possible. Furthermore, a positive con-

trol, which must have a band in accordance with the amplified DNA fragment, was 

always used. 

For the specific detection of amplification products of semi-nested Borrelia PCR (5S-

23S rDNA fragments) a 1.5% agarose gel was prepared and loaded as follows: 

Table 3.5: Pipetting schemes for the 1st and 2nd run of the semi-nested 5S23S rDNA-PCR 
for the detection of Borrelia spp. 

1st PCR run  2st PCR run 

Reagent Amount  Reagent Amount 

10 × Buffer 5 μl  10 × Buffer 5 μl 

MgCl2 (25mM) 5 μl  MgCl2 (25mM) 5 μl 

dNTP Mix (1 mM je dNTP) 10 μl  dNTP Mix (1 mM je dNTP)* 10 μl 

Tris HCL (300 mM) 6.7 μl  Tris HCL (300 mM) 6.7 μl 

23SN1 (6 pmol) 5 μl  23SN2 (6 pmol) 5 μl 

23SC1 (6 pmol) 5 μl  5SCB (6 pmol) 5 μl 

Nuclease-free H2O 8 μl  Nuclease-free H2O 11 μl 

AmpliTaq® (5 U/μl) 0.3 μl  AmpliTaq® (5 U/μl) 0.3 μl 

   Uracil-DNA glycosylase (1 U/µl) 0.5 μl 

Sample DNA 5 μl  DNA of the 1st PCR run 1.5 μl 

Total 50 μl  Total 50 μl 

*dTTP : dUTP at a ratio of 4 to 1 
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 Mix of 0.75 g agarose with 50 ml of TBE buffer (1×) in a glass flask, 

 bring to a boil twice on a hotplate under constant stirring, 

 cool down to approximately 50 °C, 

 add 10 µl of a 0.1% ethidium bromide solution, 

 pour liquid gel into a specific gel chamber equipped with combs to form slots, 

 wait approximately 20 min until polymerized, 

 put polymerized gel in an electrophoresis chamber filled with TAE buffer (1×), 

 fill the slots with 8 µl PCR product and 2 µl loading buffer, 

 and apply the marker (100 Base Pair ladder) and the positive control. 

3.2.6 Specific detection of Rickettsia spp. 

Infections with Rickettsia spp. in host organs and ticks were analyzed with the real-

time TaqMan® real-time PCR protocol of Wölfel et al. (2008) using the LightCycler® 

targeting the gltA gene (Pluta et al. 2010, Pluta 2011). To avoid false-positive Rick-

ettsia spp. results from the real-time PCR, two additional PCRs were performed on 

the thermocycler for those samples that showed positive on the LightCycler®. The 

Table 3.6: Temperature profiles of the semi-nested 5S23S rDNA-PCR for the detection of 
Borrelia spp. 

 1st PCR run  2st PCR run 

 
Temp. (°C) Time 

No. cy-
cles 

 
Temp. 

(°C) 
Time 

No. cy-
cles 

Denaturation / Decontamination 

 94 1.5 min. 1  37 4 min. 1 

     96 2 min. 1 

Amplification 

Denaturation 94 20 sec. 35  94 20 sec. 35 

Annealing 52 30 sec. 35  55 30 sec. 35 

Elongation 72 40 sec. 35  72 40 sec. 35 

Final Elongation 72 5 min. 1  72 5 min. 1 

Cooling 

 4 ∞ 1  4 ∞ 1 

 



Materials and Methods - Microbiological methods 

90 

first PCR targeted the rOmpA gene (ompA) following the method of (Roux and Raoult 

2000). The second PCR targeted the citrate synthase gene (gltA) using primers from 

Nilsson et al. (1999). The temperature profiles and pipetting schemes were in ac-

cordance with Hartelt et al. (2004). The detection of the PCR amplification produc-

tion from the thermocycler was carried out on an agarose gel electrophoresis (see 

Section 3.2.5.3). 

3.2.6.1 gltA-PCR on the LightCycler® 

The gltA-PCR on the LightCycler® used a TaqMan® probe (see Section 3.2.4.3) and 2 

primers, which amplified a 70 bp region of the citrate synthase gene (gltA). PanRick 

gltA 2 for was used as forward primer, PanRick gltA 2 rev was the reverse primer 

and PanRick gltA taq the employed probe (Table 3.7). Each PCR run used purified of 

Rickettsia rickettsii (Dr. Kathrin Hartelt, Landesgesundheitsamt Baden-Württem-

berg) as positive control and H2O as a negative control. The pipetting scheme em-

ployed and the temperature profile are displayed in Tables 3.8 and 3.9, respectively. 

This PCR method has also been used in other studies for the investigation of ticks 

(Pluta et al. 2010, Pluta 2011). 

3.2.6.2 rOmpA-PCR on the thermocycler 

This PCR protocol targets the rOmpA gene, a sequence of 532 bp. This gene encodes 

the rickettsial outer membrane protein (Roux and Raoult 2000). The purified DNA 

Table 3.7: Primers and probe of the gltA-PCR on the LightCycler® for the detection of Rick-
ettsia spp. 

Primer / Probe Sequence (5’ to 3’) 

forward primer PanRick gltA 2 for 5'-ATAggACAACCgTTTATTT-3' 

reverse primer PanRick gltA 2 rev 5'-CAAACATCATATgCAgAAA-3' 

TaqMan® probe PanRick gltA taq 5´-6FAM-CCTgATAATTCgTTAgATTTTACCg-TMR-3´ 
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of Rickettsia monacensis (Dr. Kathrin Hartelt, Landesgesundheitsamt Baden-Würt-

temberg, Stuttgart) was used as a positive control. The primers employed are shown 

in Table 3.10 and the pipetting scheme and the temperature profile used are shown 

in Tables 3.11 and 3.12, respectively. 

3.2.6.3 gltA-PCR on the thermocycler 

This PCR method amplifies a target sequence of 341 bp using the primers from 

(Nilsson et al. 1999). The temperature profile and the pipetting scheme were 

Table 3.8: Pipetting scheme of the 
gltA-PCR for Rickettsia spp. 

Reagent Amount 

PanRick gltA 2 for (5 pmol/μl) 2 μl 

PanRick gltA 2 rev (5 pmol/μl) 2 μl 

PanRick gltA taq (4 pmol/μl) 1 μl 

MgCl2 (25 mM) 1.6 μl 

H2O 6.4 μl 

Enzyme mix (from LC-Kit) 2 μl 

Sample DNA 5 μl 

Total 20 μl 

 

Table 3.9: Temperature profile of the gltA-PCR 
for the detection of Rickettsia spp. 

 Temp. 
(°C) 

Time 
(sec) 

Temp. 
change 

(°C/sec) 

No. 
cy-

cles 

Denaturation 

 94 60 20 1 

Amplification 

Denaturation 94 4 20 50 

Annealing 55 45 20 50 

Elongation 72 30 20 50 

Cooling 

 40 30 20 1 

 

Table 3.10: Primers of the rOmpA-PCR (top), the rOmpB-PCR (middle) and the gltA-PCR 
(bottom) on the thermocycler for the detection of Rickettsia spp. 

Primer / Probe Sequence (5’ to 3’) 

forward primer rOmpA-PCR Rr190.70p 5’-ATGGCGAATATTTCTCCAAAA-3’ 

reverse primer rOmpA-PCR Rr190.602n 5’-AGTGCAGCATTCGCTCCCCCT-3’ 

forward primer rOmpB-PCR 120-2788 5’-AAACAATAATCAAGGTACTGT-3’ 

reverse primer rOmpB-PCR 120-3599 5’-TACTTCCGGTTACAGCAAAGT-3’ 

forward primer gltA-PCR RH314 5’-AAACAGGTTGCTCATCATTC-3’ 

reverse primer gltA-PCR RH654 5’-AGAGCATTTTTTATTATTGG-3’ 
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adopted from (Hartelt et al. 2004). As positive control purified DNA of Rickettsia hel-

vetica and R. monacensis (Dr. Kathrin Hartelt, Landesgesundheitsamt Baden-Würt-

temberg, Stuttgart) was used. The primers used are shown in Table 3.10, while Ta-

bles 3.11 and 3.12 show the pipetting scheme and the temperature profile of the 

gltA-PCR, respectively.  

Table 3.11: Pipetting schemes for the rOmpA-PCR (left), rOmpB-PCR (center) and gltA-PCR 
(right) on the thermocycler for the detection of Rickettsia spp. 

rOmpA-PCR  rOmpB-PCR  gltA-PCR 

Reagent Vol.   Reagent Vol.  Reagent Vol. 

10 × Buffer 5 μl  Nuclease-free H2O 8 μl  10 × Buffer 5 μl 

MgCl2 (2 mM) 5 μl  10 × Buffer 5 μl  MgCl2 (2.5 mM) 5 μl 

dNTP Mix (200 μM) 10 μl  MgCl2 (2.5 mM) 5 μl  dNTP Mix (200 μM) 10 μl 

Tris HCL (40.2 mM, pH9) 6.7 μl  dNTP Mix(1 mM) 10 μl  Tris HCL (40.2 mM, pH 9) 6.7 μl 

Rr190.70p (0.5 μM) 5 μl  Tris HCL (40.2 mM, pH 9) 6.7 μl  RH314 (0.5 μM) 5 μl 

Rr190.602n (0.5 μM) 5 μl  120-2788 (5 μM) 5 μl  RH654 (0.5 μM) 5 μl 

Nuclease-free H2O 8 μl  120-3599 (5 μM) 5 μl  Nuclease-free H2O 11 μl 

AmpliTaq® (1.5 units) 0.3 μl  AmpliTaq® (1.5 units) 0.3 μl  AmpliTaq® (1.5 units) 0.3 μl 

Sample DNA 5 μl  Sample DNA 5 μl  Sample DNA 1.5 μl 

Total 50 μl  Total 50 μl  Total 50 μl 

 

Table 3.12: Temperature profiles of the rOmpA-PCR (left), rOmpB-PCR (center) and gltA-
PCR (right) on the thermocycler for the detection of Rickettsia spp. 

 rOmpA-PCR  rOmpB-PCR  gltA-PCR 

 Temp. 
(°C) 

Time 
(sec.) 

cycles  
Temp. 

(°C) 
Time 
(sec.) 

cycles 
 Temp. 

(°C) 
Time 
(sec.) 

cycles 

Denaturation       

 95 180 1  94 180 1  95 180 1 

Amplification       

Denaturation 95 20 35  95 30 40  95 30 35 

Annealing 60 30 35  50 30 40  54 30 35 

Elongation 72 60 35  68 90 40  72 45 35 

Final Elongation 72 300 1  68 420 1  72 300 1 

Cooling       

 4 ∞ 1  4 ∞ 1  4 ∞ 1 
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3.2.6.4 Sequencing of Rickettsia spp. 

From the PCR tick samples that tested positive, 83 were randomly selected and in-

vestigated to determine the species of Rickettsia present. The analyzed tick samples 

were all from roe deer. Therefore, at first a PCR protocol on the thermocycler was 

used to amplify a 811-bp sequence of the ompB gene using the primers 120-2788 

and 120-3599 in Table 3.10 (Roux and Raoult 2000, Wölfel et al. 2008). As positive 

control the purified DNA of R. monacensis (Dr. Kathrin Hartelt, Landesgesundheit-

samt Baden-Württemberg, Stuttgart) was used. The pipetting scheme and the tem-

perature profiles of the rOmpB-PCR are given by Tables 3.11 and 3.12, respectively. 

The amplification products of the rOmpB-PCR were then purified using the QIAquick 

Spin PCR Purification Kit (Qiagen, Venlo, Netherlands). Sequencing reactions were 

carried out on the thermocycler using the BigDye Terminator v1.1 Cycle Sequencing 

Kit and the ABI PRISM 310 Genetic Analyzer® on the basis of the chain termination 

method (Skuballa 2011). The BigDye (v1.1) Mix includes fragments of AmpliTaq® 

DNA polymerase, BigDye terminators, dNTPs, rTth pyrophosphatase, MgCl2 and 

buffer. Thereby the polymerase is responsible for the amplification of the DNA tem-

plate and for incorporation of the terminators. The master mix used for the sequenc-

ing reaction is described in Table 3.13.  

Table 3.13: Pipetting scheme for the Rickettsia 
DNA-sequencing. 

Reagent Amount 

BigDye Seq. Puffer (5 ×) 2 μl 

Primer (5 pmol/µl) 2 μl 

H2O 10 μl 

BigDye (v 1.1) Mix 4 μl 

DNA Template (purified) 2 μl 

Total 20 μl 
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The capillary gel electrophoresis on the ABI PRISM® 310 Genetic Analyzer used the 

Gel Performance optimized Polymer 6 (Skuballa 2011). After the resulting bases 

were checked and corrected manually where necessary, the DNA sequences were 

compared with existing data records on GenBank (NCBI taxonomy database, 

http://www.ncbi.nlm.nih.gov). 

3.3 Data supplementation 

3.3.1 Measure of aggregation and relative tick density 

Shaw et al. (1998) demonstrated that parasites on wildlife animals usually show 

patterns of aggregation following a negative binomial distribution of type I (NBI), 

with a few hosts harboring most parasites. The dispersion parameter 𝑘 of the NBI is 

often used as an inverse measure of aggregation. For each tick life history stage, the 

dispersion parameter can be calculated by the corrected moment estimate 𝑘 =

(𝜇𝑖
2 − 𝜎𝑖

2/𝑛)/(𝜎𝑖
2−𝜇𝑖) , with 𝜇𝑖 representing the mean number of the 𝑖th tick life his-

tory stage per host and 𝜎𝑖
2 being the corresponding variance, while 𝑛 is the total 

number of sampled host individuals (Wilson et al. 2002). As 𝑘 approaches zero the 

parasite aggregation increases, while larger values of 𝑘 represent a lower level of 

aggregation (Wilson et al. 2002). 

In order to estimate the relative tick density on each part (1 to 8, in Figure 3.5a and 

in Figure 3.5b) of the game carcass, the proportional surface area was determined 

by polygon measurements on photographs of roe deer and wild boar. Because the 

proportional surface area can vary with age and sex of the game animals, reference 

images of 25 roe deer and 20 wild boars were photographed for each group in ac-

cordance with the headings of Tables 3.14 and 3.15, respectively, such that 5 meas-

urements were preformed per group. Based on the photographs, the proportional 

surface area of each body of the carcass was determined using ImageJ 1.48r (by Na-

tional Institutes of Health) by performing the following steps: 

1. Draw a polygon around each body part. 
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2. Calculate the area, i.e. contained pixels, within each polygon. 

3. Compute the area sum over all polygons. 

4. Divide each individual polygon area by the sum from step 3 to gain the propor-

tional surface area. 

5. Repeat step 1 to 4 for each photograph. 

Subsequently, Microsoft Excel 2013 was used to calculate for each group the means 

and standard deviations (SDs) shown in Tables 3.14 and 3.15. Thereafter, tick den-

sities for each part of the body were calculated based on the absolute tick numbers 

in relation to the relative surface area of the body region on which they were found. 

For a specific body part, denoted by 𝑗, the relative tick density can be calculated as 

Table 3.14: Averaged surface area proportions (mean ± SD) of the roe deer body. 

Body  

Part 

Adult  

Male 

Adult  

Female 

Yearling  

Male 

Yearling  

Female 

Fawn 

Male/Fe-

male 

Total 

Study 

1 – Ear 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 

2 – Head 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.00 

3 – Neck 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.00 0.07 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 

4 – Body 0.23 ± 0.02 0.23 ± 0.01 0.24 ± 0.01 0.23 ± 0.01 0.20 ± 0.02 0.23 ± 0.01 

5 - Front legs 0.23 ± 0.02 0.25 ± 0.02 0.22 ± 0.01 0.24 ± 0.02 0.26 ± 0.02 0.24 ± 0.01 

6 - Hind legs 0.30 ± 0.01 0.27 ± 0.01 0.31 ± 0.01 0.30 ± 0.01 0.30 ± 0.03 0.29 ± 0.01 

7 - Sternum 0.03 ± 0.01 0.04 ± 0.00 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.00 

8 - Abdomen 0.04 ± 0.01 0.04 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.00 

 

Table 3.15: Averaged surface area proportions (mean ± SD) of the wild boar body. 

Body  

Part 

Adult 

Male 

Adult 

Female 

Young 

Male/Female 

Fawn 

Male/Female 

Total 

Study 

1 – Ear 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 

2 – Head 0.12 ± 0.02 0.13 ± 0.02 0.11 ± 0.01 0.13 ± 0.01 0.12 ± 0.01 

3 – Neck 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.00 0.05 ± 0.03 0.04 ± 0.01 

4 – Body 0.29 ± 0.03 0.27 ± 0.03 0.26 ± 0.02 0.26 ± 0.04 0.27 ± 0.03 

5 - Front legs 0.22 ± 0.02 0.24 ± 0.02 0.24 ± 0.02 0.22 ± 0.02 0.23 ± 0.02 

6 - Hind legs 0.23 ± 0.02 0.22 ± 0.01 0.24 ± 0.01 0.26 ± 0.02 0.24 ± 0.01 

7 - Sternum 0.03 ± 0.00 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 

8 - Abdomen 0.03 ± 0.01 0.03 ± 0.00 0.04 ± 0.01 0.03 ± 0.00 0.03 ± 0.01 
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𝐷𝑗 =
𝑡𝑗

𝑎𝑗
 , 

where 𝑡𝑗 is the total number of ticks found at attachment site 𝑗 and 𝑎𝑗 is the propor-

tional surface area determined by the procedure described above. 

Using the tick densities calculated for each part of the game carcasses, a non-para-

metric Friedman test was carried out to identify body regions preferred by ticks, 

taking into account the life history stages of the ectoparasites as well as the season 

when they were collected. Consequently, the seasonal differences in the use of at-

tachment sites could be determined with respect to the ticks’ development. By this 

means, the potential places for tick attachment, mating and co-feeding were ranked. 

During the ranking, tick life history stages and seasons having a limited sample size 

were excluded. 

In addition to this, the ideal free distribution hypothesis (IFDH) (Fretwell and Calver 

1969) was tested at the host level using correlation and regression analyses to de-

termine the relationship between the preferred attachment sites and the density of 

the ticks on the host body. In the context of ticks, this hypothesis can be interpreted 

such that with a higher tick infestation on the host body, the ectoparasites can be 

found increasingly in less preferred body areas (Sutherland 1996). 

3.3.2 Niche index – Levin’s index 

After ranking the preferred attachment sites, Levin's index 𝐵 (Levins 1968) was cal-

culated to provide information on the niche breadth of the ticks per life history stage, 

sex and status of engorgement using the following expression: 

𝐵 =
1

∑ 𝑝𝑗
2  , 

where 𝑝𝑗  specifies the proportion of ticks found on the body part with the number 

𝑗. This proportion can be calculated as 𝑝𝑗 = 𝑡𝑗/𝑇, with 𝑡𝑗 being the number of ticks 
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at body part 𝑗 and 𝑇 the total number of ticks found on the host. Because the data 

used here do not follow a normal distribution, Levin's index was standardized by: 

𝐵𝑠 =
𝐵 − 1

𝑁 − 1
 , 

whereby 𝑁 equals the total number of body parts, so that that the resulting values 

lie between 0 (narrow niche) and 1 (wide niche) (Hurlbert 1978). Thereby, a niche 

breadth of 0 indicates that all ticks were allocated on the same body part. 

3.3.3 Niche overlap – Piankas’ index 

In addition to the ranking of the relative tick densities and the calculation of niche 

breadths, the Pianka index (Pianka 1973) was calculated to obtain information on 

the niche overlap of the ticks life history stages. This index was then used to evaluate 

the importance of co-feeding dependent on the body part and tick life history stage. 

Resource overlap was calculated by: 

𝑂𝑗𝑘 =
∑ 𝑝𝑖𝑗𝑝𝑖𝑘

𝑛
𝑖=1

√∑ 𝑝𝑖𝑗
2𝑛

𝑖=1 ∑ 𝑝𝑖𝑘
2𝑛

𝑖=1

 , 

where 𝑝𝑖𝑗 represents the proportion of ticks of a certain life history stage, denoted 

by 𝑖, found at the body part with number 𝑗. The value of 𝑂𝑗𝑘 reflects the resource 

overlap between two tick life history stages 𝑗 and 𝑘, whereby the index is symmet-

rical in the sense that 𝑂𝑗𝑘 = 𝑂𝑘𝑗 . 

3.3.4 Group dependent mass index (GDMI) 

The body mass of game animals allows conclusions about their individual’s health 

and immune status (Pettorelli et al. 2002, Stubbe 2008, Briedermann 2009). It is 

assumed that the average body mass of big game depends on the sex and the stage 

of life, depending on changes over time during the year with the animal’s individual 

development, i.e. growth. Nevertheless, the definition of a condition index (CI) that 
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reflects the physical condition of animals has been controversially discussed in eco-

logical literature and has not yet been verified on roe deer (Peig and Green 2009, 

2010). For this reason, the following derivation uses a naïve approach based on the 

sample population to determine an indicator for the physical condition of the stud-

ied host animals. A standardized group dependent mass index (𝐺𝐷𝑀𝐼𝑠) was calcu-

lated for both species in relation to the age, sex and sampling period of both species. 

Roe deer and wild boar were separated into groups formed by all possible constel-

lations of sex, age and time period. For each group, denoted by 𝑔, an average body 

mass �̅�𝑔 was calculated over all related animals. Given an animal from the group 𝑔, 

the difference between its individual mass 𝑚 and the mean body mass of its group 

�̅�𝑔 was then calculated as 𝑀 = 𝑚 − �̅�𝑔. Based on the difference 𝑀 the standardized 

mass index 𝐺𝐷𝑀𝐼𝑠 was calculated for each animal using the following formula:  

𝐺𝐷𝑀𝐼𝑠 = 2 ∙ (
𝑀 − 𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛
− 0.5)  , 

where 𝑀𝑚𝑎𝑥 and 𝑀𝑚𝑖𝑛 are the maximal and minimal values of 𝑀 within the whole 

dataset including all groups. The mean body mass of each group �̅�𝑔 and the differ-

ences𝑀, 𝑀𝑚𝑎𝑥 and 𝑀𝑚𝑖𝑛 are displayed in Table B.1 of the appendix. 

The index 𝐺𝐷𝑀𝐼𝑠 lies between -1 and 1, whereby animals with low body mass tend 

to a value of -1 and those with high individual mass have an index tending to 1. Con-

sequently, animals with a value of 𝐺𝐷𝑀𝐼𝑠 > 0 have an individual body mass higher 

than the group mean �̅�𝑔 and animals with 𝐺𝐷𝑀𝐼𝑠 < 0 have a body mass lower than 

the group average. As a result, the index allows an easier interpretation of the ani-

mal’s body mass in relation to the groups formed, whereby higher indices might sug-

gest healthier conditions and lower ones a less than optimal physical state. Never-

theless, the index should not be taken as an absolute quantity to judge an animal’s 

physical condition. Rather it should be used as an indicator to support interpretation 

of other animal parameters. 
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3.3.5 Animal conditions 

As mentioned above, for each animal infestation with additional ectoparasites was 

recorded, as were whether the individual was in a poor condition and if it had any 

deformation, i.e. was somehow crippled. In addition to these individual facts, a new 

variable, denoted by “HasCondition” has been introduced into the dataset, which has 

been set to 1 if any of the above conditions was encountered. Otherwise, the 

“HasCondition” parameter has been assigned a value of 0. 

In addition, the tick induced blood loss 𝐵𝐿 was calculated for every animal sampled. 

For this purpose, the blood loss was estimated using the formula proposed by 

Tälleklint and Jaenson (1997): 

𝐵𝐿 =
(2.62 𝜇𝑙 ∙ 𝑁𝑙 + 15.86 𝜇𝑙 ∙ 𝑁𝑛 + 732.8 𝜇𝑙 ∙ 𝑁𝑓) ∙ 10−6

𝑚0.99 ∙ 0.055
∙ 100 , 

whereby 𝑁𝑙 , 𝑁𝑛 and 𝑁𝑓  are the number of larval, nymphal and female ticks on the 

host, and 𝑚 represents the body mass of the individual in kilograms. The resulting 

value represents the blood loss in percent. 

3.4 Statistical methods 

All parameters on ticks, game animals and pathogens were recorded in Microsoft 

Excel 2013. Indices, prevalences and intensities were also calculated in Excel. The 

resulting dataset was supplemented by the calculations described in Section 3.3. An 

overview of all variables contained in the resulting dataset is given by Table 3.16. 

Thereafter, the dataset was analyzed using IBM SPSS Statistics 22. Prior to statistical 

analysis, the data were tested for normal distribution using the Shapiro-Wilk test. 

For data not following the normal distribution, non-parametric tests (i.e. Mann-

Whitney U-test and Kruskal-Wallis test) were used, whereas for normally distrib-

uted data a parametric tests (i.e. t-test) were employed. 
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To compare tick prevalences between groups of host animals contingency tables 

were generated, including a chi-squared test to identify significant differences, 

whereby for the comparison of 2 groups Fisher´s exact test has been used. Besides 

Pearson correlation analysis, linear regressions and generalized linear models 

(GLMs) as well as CHAID (chi-square automated interaction detector) classification 

trees were used to determine the significant and ranked impact of all analyzed fac-

tors comprising tick data, host data and climatic measurements (Sonquist and 

Morgan 1964). With CHAID the results were classified into groups (nodes) and 

chained in a ranked order describing the most important factors that influence tick 

infestation, while the GLMs were used to inspect seasonal niche behavior of the 

ticks.  

In general, for all statistical tests P-values smaller than 0.05 were assumed to be 

significant, while values smaller than 0.001 were classified as highly significant. 

Table 3.16: List of all variables contained in the final dataset about sampled host animals 
and ticks. Note that only relevant variables are shown in the results of the statistical analy-
sis, although the complete dataset is available for future studies. 

Category Variables 

Time data: culling date, month group 

Game information: ear ID, species, age, sex, body mass, GDMI, hunting hide 

Game samples*: EDTA, serum, lung, liver, splenic, bladder, kidney, heart, muscle, ear 

Game condition: pregnant, nursing, poor condition, crippled, lungworms, deer fly, 

other ectoparasites, has condition 

Organ infections*: Rickettsia spp. in pool 1 and pool 2, Borrelia spp. in pool 1 and pool 2 

Climate: cloud coverage, relative humidity, air temperature, air pressure, 

wind speed, precipitation depth, sunshine duration, snow height 

Number of collected ticks:  total ticks, males, females, nymphs, larvae, dead, mating 

Proportional surface areas: for ear, head, neck, body, front leg, hind leg, sternum, abdomen 

Tick density: one variable for all ticks, for each life history stage and for mating 

ticks at each body part (8 × 6 = 48 variables) 

Niche breadth: Levin index and standardized Levin index for all ticks and for each 

life history stage 

Niche overlap: Pianka’s index for all combinations of tick life history stages 

Notes: type of hunt 

Tick information: tick ID, mate, host ID, species, age, engorgement, dead 

Tick infections*: Rickettsia spp., Borrelia spp., concurrent infection 

* binary variables (yes = 1/no = 0) 
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Note that in the following P-values will be provided where they indicate significance 

or where they are relevant, otherwise they will be omitted for readability reasons. 

3.4.1 Statistical modeling 

A statistical modeling approach was used to estimate models for the infestation in-

tensity of tick life history stages in relation to host and climate parameters. For rea-

sons of flexibility and in accordance with Kiffner et al. (2011a, 2011c), generalized 

additive models for location, scale and shape (GAMLSS) were used to create regres-

sion type models. In comparison to other regression-based modelling techniques 

(e.g. linear regression or GLM), the GAMLSS approach (Rigby et al. 2005) can be used 

to model the mean as well as the dispersion of the dependent response variable with 

respect to a given parametric distribution. In relation to ticks on roe deer, Kiffner et 

al. (2011c) have shown that a variable dispersion term clearly improved the model 

fit in comparison to a conventional negative binomial additive model fitting a con-

stant scale parameter. Additionally, the expression of the distribution parameters as 

functions of the exploratory variables can incorporate non-linear functions, such as 

smoothing terms. 

In a first step, the dependent variables were tested as to whether they were better 

represented by a Poisson (PO) or a negative binomial (type I) distribution. This test 

was carried out by first fitting either distribution to the data using the maximum-

likelihood estimation followed by the determination of the quality of the fit on the 

basis of the Akaike information criterion (AIC). After the selection of the distribu-

tion, the GAMLSS approach was used to calculate several models with respect to 

each developmental stage of the ticks. The first 4 models for each tick life history 

stage were estimated to determine the relationships between tick burden, air tem-

perature, host sex and host body mass. Thereby, host body mass of each host was 

weighted by a value of 0.75 to simplify its relationship with parasite biomass (see 

Kiffner et al. 2011c). Then, the modeling formulas in accordance to the notation in-

troduced by Chambers and Hastie (1992) are as follows: 
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1. Males ~ pb(Temperature) 

2. Males ~ Sex + pb(Temperature) 

3. Males ~ BodyMass + pb(Temperature)  

4. Males ~ Sex + BodyMass + pb(Temperature) 

A smoothing penalized B-spline (pb) was used to model the relationship between 

tick burden and temperature. The temperature itself was calculated as the average 

of four successive days, including the three days before the culling of the host animal 

and the day of its death. This averaging process ensured that the temperature values 

used corresponded to the attachment duration of the modeled ticks (compare with 

Kiffner et al. 2011c). Moreover, in each of the 4 models a heterogenic dispersion was 

assumed, which was related to the smoothing term “pb(Temperature)” during the 

model estimation procedure to achieve better fits (cf. Kiffner et al. 2011c). After suc-

cessful generation of the models, the best fitting one was selected based on the sam-

ple size corrected AIC, denoted by AICc (Burnham and Anderson 2002).  

In a subsequent step, a more complex model was estimated for each tick life history 

stage using the GAMLSS approach in combination with additional parameters, such 

that the inclusion of host sex, host age, host body mass, air temperature and precip-

itation depth was considered by an automatic parameter selection scheme. Based 

on the generalized AIC (GAIC) an optimization driven procedure selected the model 

which included those parameters that procured the best fit, whereby each parame-

ter included was either represented linearly or by a non-linear term using a penal-

ized B-spline. Finally, these automatically optimized models were compared to the 

corresponding aforementioned models selected by the AICc-values. The quality of 

the fits was additionally judged using worm plots (van Buuren and Fredriks 2001).  

In a final step, the GAMLSS approach was used to estimate models for each tick life 

history stage with respect to the host body mass separately for each age group of 

the hosts to gain detailed information about their interdependencies. All of the 

above calculations were carried out in R (R Development Core Team 2013) using 
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the gamlss package (Stasinopoulos and Rigby 2007). In this context, the estimation 

of all models was performed using the RS algorithm (Stasinopoulos and Rigby 

2007), whereby the automatic parameter selection made use of the stepGAIC func-

tion inside the gamlss package. 

To investigate the composition of the tick population a multinomial logistic regres-

sion was used (Venables and Ripley 2002). For roe deer the proportions of collected 

male, female, nymphal and larval ticks were modelled depending on host related 

parameters. To find the best model from an information theory point of view, re-

flected by the AIC, all possible combinations of modelling formulas for the six pa-

rameters host species, host age, host sex, body mass and attachment site as well as 

the time of sample acquisition were used to perform 63 different multinomial lo-

gistic regressions. The sampling periods were represented by month, whereby 

months with a limited sample size were excluded from the modeling process. Addi-

tionally, body regions were aggregated to facilitate interpretation of results, such 

that four groups (Ears, Head & Neck, Front legs & Sternum, Hind legs & Abdomen) 

included all sampled ticks. Note that no ticks were found on the torso of any animal. 

The model with the lowest AIC was: 

𝑇𝑖𝑐𝑘𝑆𝑡𝑎𝑔𝑒 ~ 𝑀𝑜𝑛𝑡ℎ + 𝐵𝑜𝑑𝑦𝑀𝑎𝑠𝑠 +  𝐵𝑜𝑑𝑦𝑃𝑎𝑟𝑡 +  𝐻𝑜𝑠𝑡𝑆𝑒𝑥 +  𝐻𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑖𝑒𝑠. 

This model was used for further interpretation of the effects on the composition of 

the tick population. Hereby it has to be considered that the reference group, i.e. the 

baseline, of the dependent variable was chosen such that female ticks were com-

pared against all other life history stages. Moreover, January was used as reference 

period, while the ears, male hosts and roe deer were selected as the baselines in 

relation attachment site, host sex and host species, respectively. Predictions of the 

resulting model were then used to visualize the probability distribution of the indi-

vidual tick life stages/sexes in relation to each of the independent model variables. 

The multinomial logistic regression was carried out in R (R Development Core Team 
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2013) using a maximum-likelihood estimation realized within the vgam package 

(Yee 2010). 

With respect to infections of ticks with Rickettsia spp. and Borrelia spp., analyses 

included descriptive statistics, the identification of differences in the infection prev-

alences between groups of ticks using contingency tables in combination with chi-

squared or Fisher’s exact test, the study of linear relationships between parameters 

using Pearson’s correlation coefficients, the detection of interdependencies be-

tween multiple variables by a factor analysis and, finally, the quantification of the 

parameters of importance using a decision tree and a logistic regression. The extrac-

tion of 5 orthogonal components was carried out by first applying an optimal scaling 

using categorical principal component analysis (CATPCA) to optimally quantify bi-

nary, ordinal and numerical variables (Meulman et al. 2004). This was followed by 

a factor analysis based on principle component analysis (PCA) in combination with 

a Varimax rotation and Kaiser Normalization. The decision tree was computed using 

the chi-square automated interaction detector (CHAID) classification algorithm to 

gain significant ranked impacts of the all analyzed parameters on the prevalence of 

the infections. The logistic regression was carried out using stepwise forward re-

gression to inhibit the inclusion of non-significant parameters into the modelling 

process. 
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4  
Tick burden 

This chapter presents and discusses the results with respect to the tick burden on 

roe deer and wild boar. 

4.1 Results 

4.1.1 Tick burden on roe deer 

Data were collected from September 2011 to February 2014 the examination in-

cluding a total number of 247 roe deer composed of 83 fawns, 34 yearlings (age be-

tween 1 and 2 years) and 130 adult individuals (older than 2 years) (Table 4.1, Fi-

gure 4.1). Note that the maxima appear as a result of hunting and convalescence pe-

riods in Germany. Slight culling numbers during the warmer months (April to 

September, 2012 and 2013) were due to extremely wet weather conditions that 

made large parts of the sampling area extremely boggy and hunting difficult. 

The total number of samples roe deer together with the number of collected ticks as 

well as the tick prevalence and intensities are listed by Table 4.2. Except for one 

loose and unengorged D. marginatus female (removed in October 2013), only I. rici-

nus was found on roe deer. A total of 1,584 ticks were recovered, whereby all I. rici-

nus life history stages were encountered: 154 larvae (9.7%), 492 nymphs (27.1%), 

212 males (13.4%) and 789 females (49.8%). 
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The highest average tick infestation per deer was recorded during May 2013 (inten-

sity: 171.7 ± 63.2), followed by April 2012 with 35.5 ± 5.5 ticks per animal. The high-

est tick prevalences were recorded from April to September 2012 and from May to 

September 2013, although most of the animals were culled between November and 

January. For the whole period of the study the lowest tick prevalences were deter-

mined during the winter months, from November to January, with a minimal and 

maximal values of 12.5% (intensity: 0.1 ± 0.3) and 60.5% (intensity: 1.7 ± 1.7), re-

spectively, during winter 2012 (see Figure 4.1a). 

The tick burden per roe deer over the whole study period ranged from 0 to 261 ticks 

and averaged to 6.4 (± 21.8) ticks per deer. Most of the tick burden was caused by 

adult ticks with an intensity ranging from 0 to 62 ticks (intensity: 4.1 ± 9.0). Only 

females range from 0 to 53 (intensity: 3.2 ± 7.4). Fewer males were recovered, with 

Table 4.1: Numbers of sampled roe deer and wild boar by age with respect to year and 
month. 

    Roe deer   Wild boar Both 
species   Adult Yearling Fawn Total   Adult Young Piglet Total 

2011 

Sep 1 - - 1  - 1 - 1 2 

Nov 24 2 21 47  22 23 19 64 111 

Dec 6 - 2 8   3 2 8 13 21 

2012 

Jan 13 - 6 19   7 1 14 22 41 

Apr 2 - - 2  - - 1 1 3 

Mai 2 9 - 11  - 1 - 1 12 

Jun 2 1 - 3  - - - - 3 

Aug 1 - - 1  - - - - 1 

Sep 2 2 5 9  2 1 - 3 12 

Nov 20 3 15 38  8 17 55 80 118 

Dec 10 - 14 24   5 4 21 30 54 

2013 

Jan 3 - 6 9  3 4 32 39 48 

Mai - 3 - 3  - - 1 1 4 

Jun 2 2 - 4  - 1 - 1 5 

Sep - 1 - 1  - - 1 1 2 

Nov 12 6 3 21  13 10 7 30 51 

Dec 18 3 8 29  8 7 4 19 48 

2014 Jan 12 2 3 17  12 11 15 38 55 

Total 130 34 83 247   83 83 178 344 591 
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a range from 0 to 14 ticks per deer (intensity: 0.9 ± 1.9). The burden of mating adults 

per roe deer ranged from 0 to 22 with a mean of 1.1 (± 2.6). The widest range was 

recorded for nymphs with 0 to 149 individuals per host (intensity: 1.7 ± 11.8). Lar-

vae abundance ranged from 0 to 50 (intensity: 0.6 ± 3.6) individuals. The average 

number of tick life history stages with respect to each sampling period is displayed 

in Figure 4.1b. 

The highest tick prevalence (67.7%) was determined for young roe deer aged be-

tween 1 and 2 years, followed by individuals younger than 1 year (53.0%) and adults 

Figure 4.1: For the total period of sampling the bar plots in (a) show the average number of 
ticks per roe deer. The line plots in visualize the tick prevalences (dark gray) and the num-
ber of sampled animals (light gray) for roe deer. Dashed lines indicate time periods with 
zero animals between months with samples. The plots in (b) show the average number of 
tick life stage/sex per roe deer for each month. The standard deviations of the tick intensi-
ties are represented by the whiskers. 

(a) 

(b) 
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with 46.2% tick infestation. The highest prevalences of larvae (50.0%) and nymphs 

(14.7%) were also found on yearlings. Dead ticks were only found on adult roe deer 

(0.8%). To verify dependence between tick infestation and the age groups of the 

hosts, a Kruskal-Wallis test with a subsequent post-hoc analysis was carried out. The 

results show that yearlings were highly significantly (P < 0.05) more infested than 

fawns and adult deer (Table 4.3). This test was also carried out for each tick life his-

tory stage leading to equal results (males, females, nymphs and larvae: P < 0.05).  

To test if there are differences in tick infestation between male and female hosts, a 

Mann-Whitney U-test was performed with a result approaching the level of signifi-

cance (P = 0.065) indicating that male deer tend to have more ticks than female deer. 

By splitting up the dataset by host age and repeating the test for each tick life history 

stage, the infestation intensity for adult and larval ticks on adult roe deer was signif-

icantly male-biased (males: P = 0.039; females: P = 0.044; larvae: P < 0.001), while 

for fawns and yearlings no imbalances were detected. However, nursing adult fe-

male roe deer had significantly higher tick burdens (Mann-Whitney U-test: P = 

0.024) than females without fawns. 

Table 4.2: Number of ticks from roe deer, sampled roe deer and infested roe deer grouped 
by age and sex of the hosts together with the tick prevalence and the average number of 
ticks per roe deer (intensity). 

  Roe Deer 

Infested  

Roe Deer Ticks Prevalence Intensity 

Fawn 83 44 213 53.0% 2.6 ± 5.5 

 male 35 19 68 54.3% 1.9 ± 3.3 

 female 48 25 145 52.1% 3.0 ± 6.6 

Yearling 34 23 864 67.7% 25.4 ± 51.8 

 male  17 11 546 64.7% 32.1 ± 66.8 

 female 17 12 318 70.6% 18.7 ± 31.1 

Adult 130 60 507 46.2% 3.9 ± 9.4 

 male 46 26 351 56.5% 7.6 ± 14.5 

 female 84 34 156 40.5% 1.9 ± 3.4 

Total 247 127 1584 51.4% 6.4 ± 21.8 
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The levels of aggregation (see Section 3.3.1) on roe deer was highest for nymphs (k 

= 0.02), followed by larvae (k = 0.03), females (k = 0.19) and males (k = 0.26). Par-

ticularly on yearlings the level of aggregation was lower for all tick life history stages 

(adults: k = 0.59, nymphs: k = 0.07, larvae: k = 0.11) than on adult roe deer (adults: 

k = 0.19, nymphs: k = 0.02, larvae: k = 0.04) and fawns (adults: k = 0.45, nymphs: k 

= 0.02, larvae: k = 0.05). 

The blood loss induced by the tick infestation (see Section 3.3.5) of roe deer is shown 

in Figure 4.2. More than 90% of the animals had an estimated blood loss lower than 

1%, while about 8% of the deer lost between 1 and 4% of their blood. For only 1% 

of the individuals the blood loss was larger than 4%. As a result, the mean blood loss 

of all roe deer sampled was as low as 0.3%. 

Table 4.3: Post-hoc analysis of the Kruskal-Wallis test comparing age groups of roe deer 
by tick burden. 

Group 1 Group 2 Test Statistic Std. Error Std. Test Stat. Sig. Adj. Sig 

> 1 year < 1 year 0.607 9.431 0.064 0.949 1.000 

> 1 year 1 year 47.304 12.930 3.658 0.000 0.001 

< 1 year 1 year -46.697 13.668 -3.416 0.001 0.002 

Each row tests the null hypothesis that Group 1 and Group 2 distributions are the same. 

Asymptotic significances (2-sided tests) are displayed. The significance level is 0.05.  

Figure 4.2: Estimated blood loss (not considering the production of new blood) due to in-
festation by I. ricinus of roe deer. 
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4.1.2 Tick burden on wild boar 

A total of 344 wild boar, with 178 piglets, 83 young boars (aged from 1 to 2 years) 

and 83 adult boars which were older than 2 years, were examined. The dataset in-

cludes 78 boars sampled in 2011, whereby 77 individuals were collected during No-

vember and December. In 2012, a total of 137 wild boar were recorded with the 

highest incidence (110 wild boars) from November to December. Similar to 2012, 

the 91 samples from 2013 were mainly collected during the winter months, i.e. Jan-

uary, November and December (88 wild boars). During January 2014 a number of 

38 additional wild boars have been sampled (see Table 4.1). 

Table 4.4 gives an overview over the total number of wild boar sampled and the 

number of ticks collected in relation to the tick prevalence and the average number 

of ticks per animal. From European wild boar only 46 I. ricinus, including 5 nymphs 

(10.9%), 4 males (8.7%) and 37 females (80.4%), were removed. Larvae as well as 

mating ticks were not found on boars. Most ticks showed little engorgement, while 

ticks with a higher level of engorgement were dead (11 ticks; 23.9%). Of the dead 

ticks, 4 were found on male and 7 on female boar. On adult wild boar 4 of 8 (50.0%) 

and on yearlings 5 of 9 (55.6%) ticks were dead, while on piglets only 2 of 29 (6.9%) 

were dead. The highest intensities of infestation was observed in May 2013 on a 

Table 4.4: Number of ticks from wild boar, total number of wild boar and number of tick 
infested wild boar together with the tick prevalence and the average number of ticks per 
host (intensity) grouped by host age and sex. 

  
Wild Boar 

Infested  

Wild Boar Ticks Prevalence Intensity 

Piglet 178 10 29 5.6% 0.16 ± 0.97 

 male 88 8 22 9.1% 0.25 ± 1.22 

 female 90 2 7 2.2% 0.08 ± 0.64 

Yearling 83 5 9 6.0% 0.11 ± 0.52 

 male 40 1 1 2.5% 0.03 ± 0.16 

 female 43 4 8 9.3% 0.19 ± 0.70 

Adult 83 6 8 7.2% 0.10 ± 0.37 

 male 25 3 4 12.0% 0.16 ± 0.47 

 female 58 3 4 5.2% 0.07 ± 0.32 

Total 344 21 46 6.1% 0.13 ± 0.76 
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single boar with 10 ticks, followed by April 2012 with a single animal carrying 2 

ticks. During the whole study period tick prevalence was low (6.1%), whereby no 

ticks were found on wild boar in September 2011, in January, May and December 

2012, in January and September 2013 as well as in January 2014 (Figure 4.3a). 

The overall tick burden per wild boar ranged from 0 to 10 ticks (intensity: 0.13 ± 

0.76), while female ticks showed the highest intensities, ranging from 0 to 5 (inten-

sity: 0.11 ± 0.55), followed by nymphs ranging from 0 to 3 (intensity: 0.01 ± 0.19) 

and male ticks with a range of from 0 to 2 (intensity: 0.01 ± 0.15) individuals per 

boar. Females were also the most prevalent ticks on the boar (5.8%), followed by 

Figure 4.3: For the total period of sampling the bar plots in (a) show the average number of 
ticks, line plots visualize the tick prevalences (dark gray) and the number of sampled wild 
boar (light gray). Dashed lines indicate time periods with zero samples. The plots in (b) 
show the average number of tick life stage/sex per wild boar for each sampling period. The 
standard deviations of the tick abundances are represented by the whiskers. 

(a) 

(b) 
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males (0.58%) and nymphs (0.58%). The tick intensities grouped by sex and life his-

tory stage are shown in Figure 4.3b.Wild boars older than 1 year had the highest tick 

prevalence (7.2%), followed by animals with an age of between 1 and 2 years (6.0%) 

and piglets with a tick prevalence of 5.6%. However, the highest prevalence of dead 

ticks was registered on wild boar between 1 and 2 years old (4.8%), while older 

(3.6%) and younger (1.1%) individuals had fewer dead ticks. Most prevalent were 

female ticks on wild boar older than 1 year (6.0%), male ticks on individuals younger 

than 1 year (1.1%) and nymphs on boars older than 2 years (1.2%). 

Piglets had the highest average number of ticks (0.16 ± 0.97), followed yearlings 

(0.11 ± 0.52 tick per boar) and adults (0.10 ± 0.37). Male ticks were only found on 

boars younger than 1 year (0.23 ± 0.21), while females were distributed over all of 

the age groups (piglets: 0.12 ± 0.64; yearlings: 0.11 ± 0.52; adults: 0.07 ± 0.30). 

Nymphs were only collected from piglets (0.02 ± 0.22) and adult boar (0.02 ± 0.21). 

Similar to roe deer, a Kruskal-Wallis test and Mann-Whitney U-tests were carried 

out to test if tick infestation depended on the age or the sex of the hosts. The inten-

sity of ticks, in particular that of female ticks, was significantly higher (P < 0.05) on 

male piglets (0.08 ± 0.06) than females (0.07 ± 0.04). However, none of the other 

tests showed significant differences between the individual groups, neither for age 

(P = 0.890), nor for sex (P = 0.234). The highest level of aggregation on wild boar 

was reached by nymphs (k = 0.004), followed by males (k = 0.006) and females (k = 

0.055). 

The largest amount of blood loss induced by ticks from wild boar was 0.4% and the 

average blood loss was 0.005%. 

4.1.3 Identification of factors influencing tick activity 

Pearson’s correlation coefficients show for temperature related factors (i.e. air tem-

perature, maximum air temperature, minimum air temperature, minimum air tem-
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perature at the ground and sunshine duration) a highly positive significant relation-

ship to tick burden on roe deer (Table 4.5). Could coverage was negatively corre-

lated with tick burden on roe deer at a highly significant level. The correlation coef-

ficients for relative humidity in relation to males, females and larvae were all nega-

tive and at a highly significant level, while for nymphs humidity no significance was 

determined. For air pressure, precipitation depth and wind speed no significant cor-

relation was detected.  

Significant (P < 0.05) negative correlations were found between tick burden and 

host health status (i.e. host body mass and 𝐺𝐷𝑀𝐼𝑠), indicating that healthier animals 

have fewer ticks. In particular, a poor condition or crippled roe deer appear to be 

strongly associated with the presence of ticks and their status of mating (P < 0.01), 

such that more ticks were found on weak individuals. Moreover, highly significant 

correlations were found for nymphs on roe deer with a lower body mass and in bad 

physical condition (P < 0.01).  

A closer look at the correlation coefficients with respect to individual sampling pe-

riods (Table 4.6) reveals the during spring (May/Jun) increasing temperature led to 

a significant decrease in larvae and nymphs on roe deer, while adult ticks were not 

significantly correlated. During the same period, relative humidity affected the 

nymphs significantly negatively. As a result of both effects, the saturation deficit has 

a significantly negative relationship with nymphal tick burden. A quite contrary ob-

servation can be made for autumn (Sep/Oct) correlation coefficients, when temper-

ature was significantly positively related to nymphs and larvae, while relative hu-

midity was not significantly associated with all life history stages and a higher satu-

ration deficit increased the number of larvae found. 

 



 

 

  Ticks Adults Females Males Nymphs Larvae Dead Ticks Mating Ticks 
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GDMI -0.146* -0.095 -0.089 -0.104 -0.167** -0.100 -0.007 -0.114 
Body Mass -0.142* -0.082 -0.079 -0.079 -0.165** -0.112 0.038 -0.113 

Poor or Crippled Condition 0.353** 0.179** 0.189** 0.111 0.388** 0.419** -0.008 0.308** 
Relative Humidity -0.273** -0.417** -0.426** -0.316** -0.121 -0.219** -0.190** -0.286** 

Air Temperature 0.319** 0.464** 0.478** 0.333** 0.170** 0.220** 0.073 0.278** 
Min. Air Temperature near Ground 0.247** 0.360** 0.377** 0.233** 0.132* 0.166** -0.008 0.195** 

Min. Air Temperature 0.265** 0.400** 0.417** 0.266** 0.133* 0.176** 0.001 0.213** 
Max. Air Temperature 0.332** 0.460** 0.472** 0.337** 0.190** 0.241** 0.102 0.297** 

Sunshine Duration 0.237** 0.367** 0.373** 0.279** 0.097 0.204** 0.204** 0.270** 
Cloud Coverage -0.180** -0.259** -0.262** -0.204** -0.087 -0.158* -0.192** -0.212** 

Precipitation Depth -0.084 -0.100 -0.097 -0.096 -0.059 -0.067 -0.030 -0.086 
Air Pressure -0.089 -0.099 -0.109 -0.043 -0.064 -0.081 0.000 -0.047 
Wind Speed 0.006 0.061 0.066 0.032 -0.028 -0.027 -0.053 -0.010 

W
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GDMI -0.027 -0.030 -0.049 0.048 -0.006 × -0.080 × 
Body Mass -0.046 -0.055 -0.055 -0.038 0.006 × 0.044 × 

Poor or Crippled Condition 0.061 0.073 0.088 -0.004 -0.004 × -0.008 × 
Relative Humidity -0.117* -0.082 -0.064 -0.117* -0.186** × -0.095 × 

Air Temperature 0.135* 0.080 0.072 0.086 0.261** × 0.132* × 
Min. Air Temperature near Ground 0.031 0.008 0.017 -0.025 0.092 × 0.094 × 

Min. Air Temperature 0.042 0.017 0.024 -0.016 0.111* × 0.112* × 
Max. Air Temperature 0.169** 0.103 0.085 0.137* 0.316** × 0.098 × 

Sunshine Duration 0.222** 0.160** 0.123* 0.243** 0.333** × 0.077 × 
Cloud Coverage -0.146** -0.119* -0.105 -0.134* -0.173** × -0.082 × 

Precipitation Depth 0.159** 0.145** 0.142** 0.112* 0.139** × 0.078 × 
Air Pressure -0.100 -0.102 -0.097 -0.088 -0.050 × -0.030 × 
Wind Speed -0.032 -0.030 -0.022 -0.048 -0.027 × 0.036 × 

 Significances: * P < 0.05;** P < 0.01; × live history stage not found 

Table 4.5: Pearson's correlation coefficients for ticks on roe deer and wild boar in relation to climate and host condition with respect to the 
whole sampling period. 
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On wild boar there were significant correlations (P < 0.05) between total tick burden 

and climate related parameters, such that higher air temperatures and a lower rel-

ative humidity are indicators for higher tick burden. Highly significant positive cor-

relations (P < 0.01) can be observed for cloudy, warm days with longer sunshine 

duration and higher precipitation depths, which resulted in an increased tick bur-

den, whereby the number of dead ticks found also correlated positively with higher 

temperatures (P < 0.05). In particular, the findings of nymphs on wild boars are re-

lated in a highly significant manner (P < 0.01) with these climatic factors. Significant 

relationships between sex, age, health status or any other host related parameter 

with the tick burden were not found. For the period of May/Jun with higher satura-

tion deficits there were significantly reduced numbers of male and nymphal ticks on 

wild boar (Table 4.6), although air temperature and relative humidity were not sig-

nificantly correlated with respect to all life history stages. 

Table 4.6: Pearson’s correlation coefficients for tick life history stages on roe deer and 
wild boar in relation to saturation related parameters with respect to individual periods. 

R
o

e
 D

e
e

r 

May/Jun Females Males Nymphs Larvae 

Relative Humidity 0.372 0.275 0.440* 0.345 

Saturation Deficit -0.282 -0.309 -0.448* -0.400 

Air Temperature -0.218 -0.306 -0.538* -0.511* 

Sep/Oct Females Males Nymphs Larvae 

Relative Humidity -0.017 0.234 -0.134 -0.331 

Saturation Deficit -0.375 -0.554 0.533 0.716* 

Air Temperature -0.534 -0.602 0.612* 0.650* 

W
il

d
 B

o
a

r May/Jun Females Males Nymphs Larvae 

Relative Humidity 0.182 0.365 0.365 × 

Saturation Deficit -0.991 -0.998* -0.998* × 

Air Temperature -0.477 -0.302 -0.302 × 

Significances: * P < 0.05; ** P < 0.01; × live history stage not found 
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4.1.4 Ranking of influences on tick burden 

The CHAID algorithm was first applied to the whole roe deer dataset, including host 

and weather data (Figures 4.4 to 4.8). It shows that climatic factors are highly im-

portant in their influence on tick burden, with daily air temperature being the 

strongest parameter for males and females, followed by the “HasCondition” variable, 

which is defined as association with the presence of any host infestations with other 

parasites (e.g. lungworms) in conjunction with poor or crippled host condition (Fig-

ure 4.4). The trees for non-adult ticks ranked the “HasCondition” parameter even 

higher than climatic factors (Figure 4.5), such that temperature and relative humid-

ity were on the second level for nymphs and larvae. For both life history stages the 

CHAID algorithm isolated 6 roe deer having a condition (e.g. other ectoparasites or 

(a) (b) 

Figure 4.4: Decision trees for roe deer with respect to male (a) and female ticks (b) gener-
ated using the CHAID algorithm considering biotic (i.e. host age, sex and conditions) and 
abiotic factors (i.e. climate). 
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were crippled) that were significantly more highly infested (Node 2) than the rest 

of the population (Node 1). Temperature was always positively associated with the 

intensity of infestation with the tick life history stages and the trees show a thresh-

old of 8 °C at which the tick burden was significantly increased. For a low relative 

humidity (≤ 80.4%) more larvae were observed on roe deer. These observations 

stand in direct relationship to the correlation coefficients studied in the previous 

section, where significant and highly significant linear relationships between tick 

life history stage intensities, air temperature related parameters and relative hu-

midity were observed. The lowest levels of the decision trees for nymphs and larvae 

suggest that roe deer related parameters could play a secondary role for ticks. 

(a) (b) 

Figure 4.5: Decision trees generated using CHAID for nymphs (a) and larvae (b) on roe deer 
considering biotic and abiotic parameters. 
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Therefore, host parameters were analyzed separately with CHAID using a first run 

that included all sampled ticks and additional runs for each tick life stage/sex. The 

results of the collective analysis shown in Figure 4.6 reveals that the most significant 

host parameter related to Ixodes ricinus burden is the age of roe deer, with signifi-

cantly more ticks on yearlings (25.41 ± 51.80) than on fawns and adult individuals 

(3.38 ± 8.11). The second most significant factor with respect to fawns and adult roe 

deer is the sex of the hosts, whereby males showed higher tick infestations (5.17 ± 

Figure 4.6: Decision trees for all ticks from roe deer generated using the CHAID algorithm 
considering host parameters only. 
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11.42) than females (2.28 ± 4.84). Furthermore, ticks were more abundant on adult 

male deer (7.63 ± 14.48) than on younger animals (1.94 ± 3.29). For female fawns 

and adults, their physical condition, represented by the 𝐺𝐷𝑀𝐼𝑠, was relevant, as 

those animals in bad condition (𝐺𝐷𝑀𝐼𝑠 ≤ -0.389) had substantially more ticks than 

those in good condition. 

Figure 4.7: Decision trees for (a) male ticks and (b) female ticks with respect to roe deer 
host parameters generated with SPSS using the CHAID algorithm. 

(a) (b) 
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Analyzing parasitism by female ticks (see Figure 4.7a), the most important parame-

ter is also given by the age of roe deer, with yearlings clearly favored by adult female 

ticks (10.71 ± 13.64) versus fawns and adults (2.03 ± 4.90). Male hosts (3.11 ± 7.19) 

are preferred by female ticks, whereas males older than one year showed a higher 

mean abundance (4.54 ± 9.18) than those younger than one year (1.23 ± 1.94). Anal-

ysis of the preferences of Ixodes ricinus males (Figure 4.7b) are comparable to the 

(a) (b) 

Figure 4.8: Decision trees for roe deer host parameters in relation to (a) nymphs and (b) 
larvae generated using the CHAID algorithm. 
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findings for female ticks. The first division of the dataset was given by the host age, 

with yearlings showing a higher infestation (2.21 ± 3.48) than fawns and adult hosts 

(0.64 ± 1.41). Then, data was divided by sex, with male deer showing slightly higher 

tick infestations (0.96 ± 1.94) than female deer (0.45 ± 0.90). In contrast to adult 

ticks, the most outstanding parameter in nymphal abundance, denoted by the 

“HasCondition” variable, is defined as association with the presence of any host in-

festations with other parasites (e.g. lungworms) in conjunction with poor or crip-

pled host condition. 

The CHAID decision tree for nymphs shows that a high average number of nymphs 

can be expected on hosts having any of the aforementioned conditions (24.83 ± 

60.83) versus lower tick infestations on deer in good condition carrying no other 

parasites (1.16 ± 7.17) (Figure 4.8a). The latter group is further divided by the age 

of the hosts, whereby yearlings had more nymphs (5.21 ± 17.58) than adults and 

fawns (0.52 ± 2.97). This non-yearling group is again subdivided by host body mass. 

Roe deer with a lower body mass carried slightly more nymphs (2.70 ± 7.05) than 

individuals who weighted more than 10 kg (0.29 ± 2.04). Similarly to nymphs, the 

decision tree for parameters effecting larval infestation (see Figure 4.8b) is also first 

divided by the host infestation with other parasites, whereby highly parasitized and 

poor conditioned individuals carried significantly more ticks (8.33 ± 20.41) than 

those in better condition (0.43 ± 1.84). Similar to nymphs, the group of ill condi-

tioned individuals was subdivided by host age, with yearlings being more highly in-

fested (1.88 ± 3.90) than fawns and adults (0.20 ± 1.08). The last important param-

eter pointed out by CHAID is the sex of the hosts, such that larval ticks slightly fa-

vored male roe deer (0.47 ± 1.70) versus females (0.04 ± 0.26). 

Decision trees were also used to examine the host parameters of wild boar in rela-

tion to tick infestation. However, the CHAID algorithm did not identify any signifi-

cant splitting parameter for the wild boar dataset. This is in accordance with the 

correlation analysis, where no linear relation between any of the host parameters 

and tick burden was found. 
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4.1.5 Modeling of tick abundances 

Figure 4.9 depicts the fitting of the negative binomial (type I) distribution and the 

Poisson (PO) distribution against the datasets of male ticks, female ticks, nymphs 

and larvae. For each case, by visual judgment and from an information theory point 

Figure 4.9: Fits (black lines with circles) of the negative binomial (type I) distribution and 
the Poisson distribution against the dataset (gray bars) of each tick life stage/sex. The AIC-
value in the lower right of each bar plot provides information about the goodness of the fit 
(lower values are better), whereby the depicted values corresponds to the sample value 
corrected AIC. 
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of view with respect to the AIC-values, the NBI distribution represents the datasets 

better than the PO distribution. The low AIC suggests that the best fit of the NBI dis-

tribution was achieved for the nymphal data, while the largest AIC was reached for 

female ticks. However, the goodness of these fits has to be kept in mind during the 

estimation of the GAMLSS models in such a way that for tick life stages/sexes for 

which the NBI distribution fits more accurately the estimated models might be more 

reliable. In addition to the observations above, an over-dispersion of all four da-

tasets is reflected by their variance-to-mean ratios (VMRs). For male and female 

ticks on roe deer the VMR has a value of 4.2 and 16.9, respectively, while the disper-

sion for nymphs and larvae was even higher with VMRs of 79.9 and 21.3, respec-

tively. 

For the 4 “simple” models estimated from the predefined formulas (see Section 

3.4.1) the degrees of freedom (df) and the AICc-values are displayed in Table 4.7 with 

respect to each tick life history stage. From these models the ones with the lowest 

AICc and thus the ones which represented the information within the datasets most 

accurately have been selected (bold in Table 4.7). The corresponding model coeffi-

cients of the 4 chosen models are listed in Table 4.8, while the partial effects for each 

parameter included in these models are shown in Figure 4.10 with respect to the 

mean of the tick abundance on roe deer. 

Table 4.7: AICc-values and degrees of freedom (df) of the GAMLSS models describing the 
relationships between host sex, body mass, climate and tick burden. The two best fitted 
models for each tick life history stage are marked in bold. 

 Males Females Nymphs Larvae 
Model df AICc df AICc df AICc df AICc 

Automatic parameter selection 13.6 553.0 16.3 891.9 12.0 187.8 16.0 162.4 

pb(Temp.) 6.3 560.1 8.0 904.2 16.7 216.5 5.0 210.2 

Body mass + pb(Temp.) 7.2 562.2 8.9 906.5 8.5 249.1 11.0 185.0 

Sex + pb(Temp.) 5.0 559.7 8.5 905.2 10.1 246.9 11.0 170.6 

Sex + Body mass + pb(Temp.) 6.0 560.7 9.3 907.6 12.3 200.3 9.3 907.6 
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From an information-theoretic point of view the model for male ticks that included 

the smoothened temperature term pb(Temperature) in combination with roe deer 

host sex had the lowest AICc of all 4 predefined models and thus provided the best 

fit to the dataset, while models including roe deer body mass resulted in a lower 

AICc. The coefficients in the first row of Table 4.8 suggest that the female roe deer 

carry significantly fewer male ticks than male roe deer. This observation is under-

lined by the plot of the effect size in the first row and first column of Figure 4.10. 

Moreover, the number of male ticks increases almost linearly with temperature in a 

highly significant manner, although a B-spline smoothing has been used as basis for 

the model estimation procedure (see first column, second row of Figure 4.10). Fur-

thermore, the dispersion in the male tick data decreases significantly with increas-

ing temperature, which is modeled by the penalized B-spline as demonstrated in the 

upper left plot of Figure 4.11 (also see last column of Table 4.8). 

Female ticks were best represented by the B-spline smoothened temperature model 

with a minimal value of the AICc of 904.2, while models for female ticks including 

additional parameters had consistently higher AICc-values. The GAMLSS model sug-

gests that female tick burden on roe deer is monotonically rising with temperature, 

whereby the highest increase of tick abundance can be registered within the range 

of 5 to 10 °C. Similar to the model for male ticks, the dispersion in the data with 

respect to females decreased linearly on a highly significant level with increasing 

temperatures. This behavior is visualized in the upper right plot of Figure 4.11. 

Table 4.8: Mean and dispersion coefficients with significance levels of the manually selected 
models for each tick life stage/sex from roe deer. 

 mean coefficients dispersion coefficients 

 (Intercept) Sex Body mass pb(Temp.) (Intercept) pb(Temp.) 

Males 1-0.737 ± 0.268*** -0.637 ± 0.246*** not included 0.122 ± 0.021*** 1.567 ± 0.359*** -0.098 ± 0.038*** 

Females 1-0.454 ± 0.179*** not included not included 0.179 ± 0.017*** 1.333 ± 0.247*** -0.086 ± 0.026*** 

Nymphs 1-5.427 ± 2.595*** -0.967 ± 0.757*** -0.335 ± 0.299 0.542 ± 0.093*** 5.980 ± 1.409*** -0.271 ± 0.095*** 

Larvae -10.441 ± 0.976*** -1.486 ± 0.333*** not included 0.783 ± 0.061*** 6.539 ± 2.105*** -0.464 ± 0.154*** 

Significances: 'P < 0.1; * P < 0.05;** P < 0.01; *** P < 0.001   
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In contrast to the models for mature tick life history stages, the nymphal tick burden 

is best expressed by the 3 parameters, i.e. host sex, host body mass and temperature, 

whereby only the pb(Temperature) term has been marked as highly significant by 

the GAMLSS approach. Additionally, in the third column of Table 4.7 the AICc-values 

of the nymphal models decrease with the number of included parameters. With the 

selected model more nymphs are predicted to be found on female roe deer and on 

Figure 4.10: Mean male (upper left), female (upper right), nymphal (lower right) and larval 
tick burden modeled by the GAMLSS approach including relations to host sex, roe deer body 
mass and ambient temperature expressed by smoothing penalized B-spline function (black 
line). Dashed lines visualize the point-wise standard errors, while the gray circles represent 
the partial residuals of the fit. 
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roe deer with a lower body mass. However, as the standard errors of the mean coef-

ficients are relatively high for host sex and body mass and as both parameters are 

not marked as significant, the statements about their relationship to nymphal tick 

burden can only be assumed and the predictions of the model should be handled 

cautiously. On the other hand, temperature has a highly significant non-linear effect 

on nymphs on roe deer. Within this context, the GAMLSS model shows two peaks of 

nymphal abundance for temperatures around 10 °C and 17 °C, whereby the stand-

ard errors increased at low temperatures (see last row, last column of Figure 4.10). 

Moreover and similar to the male and female model, the dispersion in the nymph 

dataset decreased with rising temperatures (see lower left plot of Figure 4.11). 

Equivalently to the model for male ticks, the best model for larvae included host sex 

and the smoothened temperature term pb(Temperature) resulting in an AICc-value 

of 170.6, whereby all model coefficients are at a highly significant level. With this 

model, more larvae are predicted for male roe deer than for females. Moreover, with 

increasing temperature the larval tick burden is increasing, while the dispersion in 

Figure 4.11: Partial effects of the B-spline smoothened temperature term on the dispersion 
of male, female, nymphal and larval tick burden (black lines) on roe deer. Standard errors 
are represented by the dashed lines and the partial residual are given by the gray dots. 
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the data decreases for temperatures larger than 10 °C as shown in the lower right 

plot of Figure 4.11. With respect to the partial effect of temperature and dispersion, 

no larvae were found for temperature below 9 °C (see Figure 4.12). However, the 

model does predict an increase of the number of larvae up to a temperature of 10 °C. 

Beyond this temperature threshold a level of saturation is predicted at which the 

intensity of the infestation stays almost constant. 

However, for the partial effects of the temperature on the tick burden of nymphs and 

larvae predicted by each of the corresponding models the original tick samples have 

to be kept in mind. Therefore, Figure 4.12 shows box plots that visualize the changes 

in the tick burdens on roe deer for all tick life stages/sexes over the whole sampling 

period. For nymphs and larvae below a temperature of 9 °C almost no ticks were 

discovered. The exception was a single fully engorged female tick, which was col-

lected from a female adult roe deer at 4.45 °C. However, since the models for nymphs 

and larvae represent the changes in the infestation intensity with temperature 

smoothly by penalized B-splines (see last row of Figure 4.10), a sudden occurrence 

Figure 4.12: Box plots showing how the average number of ticks per roe deer changes with 
air temperature. Black numbers below each box provide the total number of ticks collected 
at the corresponding temperature. Whiskers correspond to the first and third quartiles and 
outliers beyond these error bars are marked by black dots. 
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of ticks might not be able to be predicted reliably and the results have to be inter-

preted cautiously. 

Throughout the models selected all intercepts and all temperature terms (mean and 

dispersion) were at least significant at a level of P < 0.05. Moreover, the models pro-

vide an adequate fit for the data of the different tick life history stages. The residuals 

of the male tick model showed a mean near zero (0.005) and a variance approaching 

a value of one (0.989), while their coefficients of kurtosis and skewness have values 

of 2.902 and 0.033, respectively. Similar values with respect to the residuals were 

achieved by the female tick model (mean = -0.044, variance = 1.112, kurtosis = 2.892 

and skewness = -0.145). This is also true for the residuals of the nymphal (mean = -

0.017, variance = 0.996, kurtosis = 2.890 and skewness = 0.053) and larval (mean = 

0.003, variance = 1.050, kurtosis = 3.190 and skewness = 0.036) models. Moreover, 

the worm plots in Figure 4.13 underline the above observations that the 4 selected 

models fit adequately to the different tick life history stages, since all deviations lie 

inside the confidence regions defined by the elliptical curves. As a result, the resid-

uals of the selected models approximate a normal distribution with a mean of 0 and 

a variance of 1. Note that the kurtosis and the skewness of the normal distribution 

are 3 and 0, respectively. 

Based on van Buuren and Fredriks (2001), Figure 4.13 can be used to judge the qual-

ity of the estimated models more specifically. For all models the corresponding 

worms pass through the origin and show neither a clearly negative nor a clearly 

positive slope. Consequently, the fitted mean and variance are neither too large nor 

too small. Moreover, the skewness of the fitted distribution can be assumed correct, 

since none of the worms had a U-shape. However, all worms were S-shaped, such 

that the tails for the fitted distribution for the male and the female models are too 

heavy (S-shape on the left sloping upwards) and the tails of the distributions for the 

nymph and larva cases are too light (S-shape on the left sloping downwards). Over-

all, these facts underline the goodness of the fits, whereby a detailed analysis of the 
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imprecisely fitted kurtosis with respect to the prediction of tick burden on roe deer 

is beyond the scope of this thesis. 

For male ticks the stepwise parameter selection choose the age, sex and body mass 

of roe deer as well as temperature and precipitation depth to represent the tick dis-

tribution with a minimal AICc of 552.976 (see Table 4.7). Thereby, the precipitation 

Figure 4.13: Worm plots with respect to female, male, nymphal and larval ticks providing a 
de-trended Q-Q plot for the GAMLSS models, for which the parameters have been selected 
manually, visualizing the deviations of the model residuals from the normal distribution. A 
polynomial fit through the deviations is given by the gray solid line, while the 95% confi-
dence intervals of the unit normal quantiles are provided by the black dashed lines. 



Tick burden - Results 

130 

depth was modeled with respect to the mean by a penalized B-spline term, which 

showed a lower abundance of male ticks on roe with increasing rainfall (see Figure 

4.14). However, this observation was not marked as significant by the GAMLSS ap-

proach and higher standard errors can be observed with precipitation depths larger 

than 3 mm, such that the model becomes less reliable beyond this threshold. In con-

trast to this, the linear temperature and host body mass terms of the male tick model 

Figure 4.14: Partial effects with respect to the mean for the automatically selected parame-
ters on mature tick burden (black lines) on roe deer. Dash lines represent the point-wise 
standard errors and gray circles correspond to the residuals of the fit. 
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were significant, whereby temperature correlated positively and body mass nega-

tively with the mean of the tick burden. However, a comparison of the coefficients 

of both effects shows that body mass has a stronger influence on male ticks than 

temperature (Table 4.9). Moreover, the model predicts a decrease in dispersion with 

temperature and body mass, such that host body mass modeled by a smoothing 

spline has a larger impact on the dispersion than temperature. With respect to host 

sex, male roe deer are highly significantly more infested by male ticks than female 

roe deer. Furthermore, the models predicts significantly less male ticks on fawns 

than on adult roe deer, while yearlings showed not significantly deviations from 

adult individuals with respect to male tick burden. Additionally, the predictions of 

the model show a highly significantly lower dispersion for fawns and a marginally 

significantly lower dispersion for yearlings in comparison to adult roe deer. 

For female ticks the GAMLSS approach selected the parameters host age, precipita-

tion depth and temperature with respect to the minimization of the GAIC (Table 4.9 

and Figure 4.14). The resulting AICc-value of the female tick model was 891.9 and 

thus lower than any of the manually composed models. Thereby, the precipitation 

and temperature terms were both modeled by a penalized B-spline and marked to 

Table 4.9: Mean and dispersion coefficients of the models generated by automatic param-
eter selection based on the GAIC for each tick life stage/sex. 

  Males Females Nymphs Larvae 

m
e

a
n

 

(Intercept) -2,471 ± 1,482'** -0,237 ± 0,232*** 3-1,659 ± 3,520*** -2,817 ± 2,354*** 

Fawns -1,097 ± 0,469*** -0,401 ± 0,215'** 3-1,879 ± 1,443*** -0,351 ± 1,197*** 

Yearlings -0.100 ± 0.364*** -0.542 ± 0.281'** 3-2.554 ± 1.163*** -0.379 ± 0.387** 

Female roe deer -0.631 ± 0.231*** ×0 ×0 -1.026 ± 0.412'** 

Temperature -0.091 ± 0.025*** ×0 3-0.511 ± 0.067*** ×0 

Body mass -0.361 ± 0.170*** ×0 3-0.675 ± 0.390'** -0.026 ± 0.310*** 

pb(Precip.) -0.052 ± 0.041*** -0.088 ± 0.032*** 3-0.535 ± 0.369*** -0.022 ± 0.042*** 

pb(Temp.) ×0 -0.165 ± 0.020*** × -0.269 ± 0.068*** 

d
is

p
e

rs
io

n
 

(Intercept) -9.080 ± 3.600*** -5.830 ± 2.140*** -31.833 ± 0.655*** 14.209 ± 3.377*** 

Fawns -3.038 ± 1.081*** -2.378 ± 0.726*** -37.963 ± 0.655*** ×0 

Yearlings -1.422 ± 0.773'** -0.859 ± 0.491'** -31.208 ± 0.852*** ×0 

Temperature -0.114 ± 0.052*** -0.104 ± 0.029*** ×0 -0.847 ± 0.207*** 

Body mass ×0 -0.519 ± 0.265'** ×0 ×0 

Precipitation ×0 ×0 ×0 -2.023 ± 0.697*** 

pb(Body mass) -0.904 ± 0.470'** ×0 ×0 ×0 

Significances: ' P < 0.1; * P < 0.05;** P < 0.01; *** P < 0.001; × = not included in model 
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be highly significant. Within this context, a decrease of the female tick burden on roe 

deer was registered above a precipitation depths of about 2 mm, whereby the un-

certainty of the model increased for higher precipitation depths. A peak for female 

infestation intensity was detected temperatures around 15 °C. A comparison of the 

magnitude of the influences of the two climatic factors on the female tick abundance 

shows that the impact of temperature is stronger by a factor of almost 2 than pre-

cipitation. In addition to this, the model predicts on a marginally significant level 

more females on yearlings and less on fawns in comparison to the group of adult roe 

deer. For the dispersion of the female tick data the model showed a highly significant 

decrease for fawns and an almost significant one for yearlings, while with rising tem-

peratures the dispersion reduced in a highly significant manner. Moreover, host 

body mass has a marginally significant negative influence on the dispersion. 

For the modeling of the nymphal tick burden on roe deer the host age and body 

mass, temperature and precipitation were selected to reach a minimal AICc-value of 

187.8 (Table 4.9 and Figure 4.15). Temperature was modeled as a linear term, such 

that it correlated positively with nymphs at a highly significant level. In contrast to 

this, the precipitation was represented by a spline predicting a minimal intensity of 

nymphs at about 2 mm, while the standard errors beyond precipitation depths of 

4 mm increased distinctly, suggesting a cautious handling of predictions within this 

range. Furthermore, a linear relationship of host body mass on the occurrence of 

nymphs approached a level of significance, whereby heavier roe deer carried less 

nymphs. In addition to this, the model predicts significantly more nymphs on year-

lings than on adult roe deer, while fawns in comparisons to adult individuals, 

showed no significant differences. However, with respect to the dispersion of the 

nymphal data fawns had a highly significant negative influence, while yearling did 

not alter the dispersion significantly. 

For larvae, host age, sex and body mass were included in the model as well as penal-

ized B-spline terms of precipitation and temperature to represent the mean of the 
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dataset (Table 4.9 and Figure 4.15). Thereby, temperature had a highly significant 

impact on larval infestations of roe deer, which was constantly high for tempera-

Figure 4.15: Mean partial effects of the models for nymphal and larval tick burden (black 
lines) on roe deer generated by the automatic parameters selection approach. Dashed lines 
correspond to the standard errors and gray circle are the partial residuals of the fit. Note 
that the sex of roe deer was not included into the nymph model. 
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tures above 9 °C. In contrast to this, the precipitation depth and host body mass were 

not marked by the GAMLSS approach as significant, although both parameters 

helped to reduce the AICc of the optimized model to a value of 162.4. The non-signif-

icance of both parameters is also underline by their corresponding plots in Figure 

4.15, where they showed either partials effects close to 0 or large standard errors. 

Similar to this, the model predicts no significant changes of larval infestation with 

host age. Nevertheless, the predictions show, at a level approaching significance, 

that female roe deer have less larva than male roe deer. The modelling of the disper-

sion in the larval data reveals the highly significant influences of temperature and 

precipitation depth, which correlate negatively, while the effect precipitation is 

stronger than that of the temperature. 

In summary, all automatically GAIC-optimized models had a lower AICc than the 

manually created ones (cf. Table 4.7) and thus represented the datasets more pre-

cisely from an information theoretical point of view. Additionally, all models con-

tained temperature as a linear or as a spline-based smoothing term with a significant 

influence on the mean tick burden. The age of roe deer was also included in all 4 

models, whereby fawns were at least significantly less infested by mature ticks than 

adult roe deer. The models also demonstrated that males and larvae preferred male 

roe deer over females, which could be an indication for sex-biased tick parasitism. 

Furthermore, precipitation depth was selected by the optimization scheme for all 

models, whereby a significant effect was only determined for female ticks. The effect 

of rainfall on tick burden on roe deer is illustrated by Figure 4.16, which shows that 

abundance of all three life history stages was close to zero when the mean monthly 

precipitation was approaching 2 mm. 

Similar to the manually selected models, the fits estimated by the automatic param-

eter selection possess residuals that follow approximately a normal distribution. As 

shown in Table 4.10 the mean and the variance of each model approach 0 and 1, 

respectively, while their skewness is nearly 0 and their kurtosis is almost equal to 3. 

These, observations are underlined by the worm plot in Figure 4.17, which shows 
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for all 4 models that salmost all observations are within the 95% confidence regions 

bounded by the elliptical curves.  

Again, the interpretation patterns from (van Buuren and Fredriks 2001) can be used 

to judge the goodness of the fits. For the male model the plot in Figure 4.17 shows 

that the worm passes slightly above the origin, has an approximately negative slop 

and an inverted U-shape. Correspondingly, it can be assumed that the fitted mean is 

slightly too small, the variance marginally too large and fitted distribution is too 

skewed to the right. The observations with respect to the mean and the variance of 

the male models also hold true for the female model, whereas the skewness of the 

female tick model fitted more accurately to the dataset, since no U-shaped worm 

Table 4.10: Statistical moments (i.e. mean, variance, kurtosis and skewness) for the resid-
uals of the models generated by automatic GAIC-based parameter selection with respect 
to roe deer and each tick life history stage. 

 Males Females Nymphs Larvae 

Mean -0.068 -0.061 -0.009 -0.055 

Variance -0.892 -0.896 -0.873 -0.995 

Kurtosis -3.290 -2.934 -2.976 -2.639 

Skewness -0.224 -0.030 -0.172 -0.049 

Figure 4.16: Average precipitation depth (bar plots) for each sampling period in relation to 
all tick life history stages (line plots). 
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was observed. The worm plot of the nymphal tick model revealed a similar behavior 

with respect the residuals to those of the male model (variance slightly too large and 

marginally too skewed to the right), whereby the worm passed closer to the origin 

and it can be assumed that the estimated mean fits more accurately to the distribu-

tion. In contrast to this, the worm plot of the larva model has an S-shape with its left 

sloping upwards, such that the tails of the fitted distribution are too heavy. 

Figure 4.17: Worm plots, i.e. de-trended Q-Q plots, for the parameter optimized models with 
respect to each tick life history stage on roe deer. The solid gray line provides a polynomial 
fit through the residuals to facilitate the visual interpretation of the plots. The 95% confi-
dence intervals of the unit normal quantiles are given by the black dashed elliptical lines. 
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Although the aforementioned interpretations emphasize the minor imprecisions of 

the generated models, it has to be kept in mind that in none of the worm plots did 

the observations exceeded the confidence intervals, while all statistical moments of 

the residuals approached those of the normal distribution and the AICc-values of the 

automatically optimized models were lower than those of the ones generated by 

manual parameter selection. Consequently, the latter 4 models can be seen as the 

best possible fit to the tick datasets in terms of the GAMLSS approach. 

In addition to the models above, a simple model of tick life history stage intensity in 

relation host body mass modeled by a penalized B-spline were computed using the 

GAMLSS algorithm. Figure 4.18 shows the partial effects for the host body mass on 

the tick burden with respect to each host age and each tick life stage/sex. In princi-

ple, on adult roe deer the number of ticks increases with rising host body mass, 

whereby the predictions of the simple models for nymphs and larvae show large 

uncertainties due to missing data for low and high masses. For yearlings the fits re-

veal peaks of the tick burden at a body mass of about (5 kg0.75)1/0.75 = 8.54 kg and of 

about (7 kg0.75)1/0.75 = 13.4 kg throughout all tick life history stages. However, when 

looking for an overall trend with respect to yearlings a slight marginally significantly 

negative correlation (Pearson’s 𝜌 = -0.313, P = 0.071) of host body mass with tick 

burden can be noticed. With respect to fawns, increasing host body mass reduced 

the intensity of tick infestations, whereby the models for nymphs and larvae show 

high standard errors for higher body masses, which are again caused by missing 

data. Nevertheless, the overall number of ticks on fawns correlated negatively with 

body mass at a highly significant level (Pearson’s 𝜌 = -0.495, P = 0.001). 

Due to the limited number of ticks (n = 46) collected from wild boar, only a single 

model has been computed including all tick life history stages using GAMLSS with 

automatic parameter selection considering the same variables as for roe deer. The 

resulting model includes a smoothened precipitation depth term and a linear tem-

perature term to represent the mean of the tick burden on wild boar as well as the 

temperature to model the dispersion of the distribution. The model coefficients in 
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Table 4.11 show that the intercepts and the temperature had a significant influence 

on the tick intensity, whereas precipitation depth was not marked as significant. 

However, a look at the plots on the left of Figure 4.19 suggests that the tick intensity 

on wild boar was highest for precipitation depths between 7 and 8 mm, while more 

ticks were generally present with rising temperature. Furthermore, the dispersion 

of the dataset decreased when the temperature were higher.  

Figure 4.18: Mean partial effects for roe deer body mass on the tick burden with respect to 
each host age and each tick life stage/sex estimated by the simple model: Ticks ~ pb(Body-
Mass). 
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With respect to the quality of the fit, the residuals of the resulting model approach a 

mean of 0 (0.037) and a variance of 1 (0.931). The kurtosis of the residuals was ap-

proximately 3 (3.060) and the skewness approached a value of 0 (-0.040). Conse-

quently, the distribution of residuals follows approximately a normal distribution 

and, therefore, the model represents an accurate fit to the wild boar dataset. The 

worm plot on the right of Figure 4.19 underlines the quality of the model as all ob-

Table 4.11: Mean and dispersion coefficients with significance levels for the model gen-
erated using automatic parameter selection based on the GAIC for ticks on wild boar. 

  Coefficients 

mean 

(Intercept) -3.709 ± 0.572*** 

pb(Precipitation depth) -0.048 ± 0.060*** 

Temperature -0.191 ± 0.057*** 

dispersion 
(Intercept) -4.247 ± 0.854*** 

Temperature -0.268 ± 0.120*** 

Figure 4.19: Mean partial effect plots (left) for the model generated by the GAMLSS ap-
proach using automatic parameter selection with respect to overall tick burden on wild 
boar. Standard errors and residuals in the effects plots are represented by the dashed lines 
and by gray circles, respectively. The corresponding worm plot is shown on the right. 
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servations lie within the confidence interval and the worm only has a slightly in-

verted U-shape, which could suggest that the fitted distribution is marginally too 

skewed to the right. 

4.1.6 Modeling the composition of the tick population 

The results of the multinomial logistic regression are shown in Table 4.12. In prin-

ciple, the regression approach results can be interpreted as three individual models, 

whereby each model compares female ticks, the reference group, to one of the other 

life history stages. The estimated coefficients and odds ratios of the intercepts show 

for the reference group (i.e. TickStage = Female, HostSpecies = roe deer, Host sex = 

Table 4.12: Coefficients and odds ratios from the multinomial logistic regression with re-
spect to the composition of the tick population. Reference categories, i.e. baselines, are 
displayed for ease of interpretation. 

  Males Nymphs Larvae 

Effects coeff. 
odds  
ratio 

coeff. 
odds  
ratio 

coeff. 
odds  
ratio 

(Intercept) -1.393*** 0.248 2.163*** 8.696 -0.067 0.935 

Host  
species 

Roe deer (Baseline) (Baseline) (Baseline) 

Wild boar -1.142 0.319 -1.747* 0.174 -20.186 0.000 

Host  
sex 

Male (Baseline) (Baseline) (Baseline) 

Female -0.390* 0.677 -0.334 0.716 -1.597*** 0.202 

Body 
part 

Ears (Baseline) (Baseline) (Baseline) 

Head & Neck -18.237 0.000 -21.506 0.000 -1.353** 0.258 

F. legs & Stern. -0.441 0.644 -5.394*** 0.005 -3.274*** 0.038 

H. legs & Abdom. 0.224 1.251 -4.128*** 0.016 -6.234*** 0.002 

Month Jan 0.478 1.613 -17.485 0.000 -14.654 0.000 

Apr 0.257 1.294 -17.363 0.000 -17.744 0.000 

May (Baseline) (Baseline) (Baseline) 

Jun -0.167 0.846 -2.150*** 0.116 -1.416*** 0.243 

Aug -15.989 0.000 1.233 3.431 0.233 1.262 

Sep 0.408 1.505 2.376*** 10.758 2.585*** 13.258 

Nov 0.685** 1.985 -4.023*** 0.018 -17.606 0.000 

Dec 0.475' 1.608 -17.484 0.000 -14.836 0.000 

Body mass -0.005 0.995 -0.023 0.977 0.102* 1.107 

Significances: ' P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001 
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male, Body part = Ears and Month = May) that the chance of finding male ticks is 

significantly lower in comparison to female ticks. In contrast to this, the likelihood 

of finding nymphs on the ears of male roe deer during May is significantly higher 

than that of finding female ticks. For larvae no significant effect in relation to the 

reference group was detected. 

The effect of host species on the tick population was only significant for nymphs. 

Here, the proportions of nymphs relative to females were significantly lower on wild 

boar than on roe deer. A similarly directed, but not significant effect can be seen 

registered for males and larvae. On the other hand, the sex of the hosts, played a 

significant role for the proportions of female and male ticks as well as for females 

and larvae, such that the occurrence of males and larvae was less likely than that of 

I. ricinus females on female hosts. Accordingly, female ticks appear to have a higher 

probability of occurrence on male hosts. The body part on which ticks were found, 

influenced the composition of the tick population with respect to the immature life 

history stages on a highly significant level. The ratio of nymphs to females and of 

larvae to females was considerably lower on legs, sternum and abdomen than on the 

ears. For larvae this negative effect was also observed with respect to head and neck. 

Relating to the sampling periods, significant changes were determined for all three 

life history stages in comparison to female ticks, but for different months. During 

November and December male in comparison to female ticks were more likely to be 

found than in May. For nymphs a highly significant increase of the occurrences in 

relation to females were determined during June and November with respect the 

reference period. Moreover, nymphs were significantly more likely than females 

during September than during May. Similar seasonal proportions were observed for 

larvae, where the positive and negative effects were at a highly significant level dur-

ing June and September, respectively. The body mass of both host species had a sig-

nificantly positive effect on the proportions between larvae and females, such that 

larvae become more likely than female ticks with higher body mass.  
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The predicted probabilities for the independent variables included in the model are 

presented Figure 4.20. The plots for roe deer (left) and wild boar (right) underline 

Figure 4.20: Predicated probabilities of all ticks life history stages models by multinomial 
logistic regression in relation to host species, host sex, body region, body mass and sampling 
period. Reference groups, i.e. baselines, are marked with †. 
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the effect of host species, as the composition of the tick population between both 

species is predicted to be considerably different. Moreover, the significant influence 

of the sampling periods on the proportions of males, nymphs and larvae in relation 

to females is supported by the visibility of the spring and autumn peaks for the im-

mature tick life history stages (first roe of Figure 4.20). The positive effect of body 

mass on the proportions of larvae can only be observed for roe deer since no larvae 

were found on wild boar. Furthermore, the significant influences of attachment sites 

and host sex on the composition of the population is underlined by the correspond-

ing bar plots. 

4.1.7 Attachment site analysis 

An overview of how the tick life history stages were distributed over the body parts 

of roe deer and wild boar is given in Table 4.13.  

On roe deer, female ticks were predominantly found on the abdomen, followed by 

sternum and ears. Males were found with similar relative proportions, but with a 

lower intensity. Mating ticks were collected most frequently from the abdomen. In 

contrast to this, the immature life history stages were mostly collected from the ears. 

No males were found on the head and neck, nymphs were not collected from head, 

neck and legs, while no larvae were removed from the neck and hind legs.  

Table 4.13: Distribution of collected tick life history stages in relation to roe deer and wild 
boar body regions. 

 Ears Head Neck Forelegs Hind legs Sternum Abdomen Total 

 n % n % n % n % n % n % n % n % 

Roe deer 577 35.4 8 0.5 13 0.8 7 0.4 39 2.4 217 13.3 723 44.4 1584 97.2 
Females 77 4.7 1 0.1 13 0.8 2 0.1 30 1.8 179 11.0 487 29.9 789 48.4 
Males 16 1.0     1 0.1 9 0.6 27 1.7 159 9.8 212 13.0 
Nymphs 352 21.6         3 0.2 74 4.5 429 26.3 
Larvae 132 8.1 7 0.4   4 0.3   8 0.5 3 0.2 154 9.5 

Mating 18 1.1     2 0.1 2 0.1 34 2.1 212 13.0 268 16.4 

Wild boar 14 0.9         5 0.3 27 1.7 46 2.8 
Females 9 0.6         5 0.3 23 1.4 37 2.3 
Males 2 0.1           2 0.1 4 0.3 
Nymphs 3 0.2           2 0.1 5 0.3 

Total 591 36.3 8 0.5 13 0.8 7 0.4 39 2.4 222 13.6 750 46.0 1630 100.0 
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On wild boar, ticks were only found at the ears, sternum and abdomen, whereby no 

immature ticks were registered from the sternum. The abdomen was the preferred 

body part of males and females, while nymphs were slightly more likely on the ears.  

The results for the seasonal analysis using the Friedman test on the tick densities of 

the roe deer body parts are given in Table 4.14. The ranking shows that larvae were 

only found on roe deer in the sampling seasons May/June and September/October 

Table 4.14: Friedman test for tick densities showing the mean rank for roe deer body parts 
with respect to each season and for the total study period. 

 Jan/Feb Mar/Apr May/Jun Sep/Oct Nov/Dec Study 

T
ic

k
s 

5.90 Abdomen 8.00 Sternum 7.38 Ear 7.64 Abdomen 5.59 Abdomen 5.86 Abdomen 
4.37 Sternum 7.00 Abdomen 6.81 Abdomen 6.55 Ear 4.47 Hind Legs 4.76 Ear 
4.29 Ear 3.50 Ear 5.74 Sternum 4.09 Sternum 4.44 Sternum 4.54 Sternum 
4.29 Head 3.50 Head 3.55 Head 3.55 Head 4.43 Ear 4.26 Hind Legs 
4.29 Neck 3.50 Neck 3.29 Neck 3.55 Neck 4.28 Head 4.17 Head 
4.29 Front Legs 3.50 Front Legs 3.24 Front Legs 3.55 Front Legs 4.28 Front Legs 4.15 Neck 
4.29 Hind Legs 3.50 Hind Legs 3.00 Hind Legs 3.55 Hind Legs 4.26 Neck 4.15 Front Legs 

A
d

u
lt

s 

5.90 Abdomen 8.00 Sternum 7.26 Abdomen 7.45 Abdomen 5.59 Abdomen 5.89 Abdomen 
4.37 Sternum 7.00 Abdomen 6.07 Sternum 4.73 Ear 4.48 Hind Legs 4.60 Sternum 
4.29 Ear 3.50 Ear 5.40 Ear 4.50 Sternum 4.44 Sternum 4.47 Ear 
4.29 Head 3.50 Head 3.64 Neck 3.86 Head 4.41 Ear 4.31 Hind Legs 

4.29 Neck 3.50 Neck 3.40 Head 3.86 Neck 4.28 Head 4.20 Neck 
4.29 Front Legs 3.50 Front Legs 3.40 Front Legs 3.86 Front Legs 4.28 Front Legs 4.18 Head 
4.29 Hind Legs 3.50 Hind Legs 3.40 Hind Legs 3.86 Hind Legs 4.26 Neck 4.18 Front Legs 

M
al

es
 

5.20 Abdomen 8.00 Abdomen 6.17 Abdomen 7.36 Abdomen 5.15 Abdomen 5.37 Abdomen 
4.47 Sternum 5.50 Sternum 5.29 Sternum 4.09 Ear 4.55 Hind Legs 4.50 Sternum 
4.39 Ear 3.75 Ear 5.26 Ear 4.09 Sternum 4.43 Ear 4.47 Ear 
4.39 Front Legs 3.75 Front Legs 3.86 Front Legs 4.09 Front Legs 4.42 Sternum 4.43 Hind Legs 

4.39 Hind Legs 3.75 Hind Legs 3.86 Hind Legs 4.09 Hind Legs 4.38 Front Legs 4.32 Front Legs 

F
em

al
es

 

5.90 Abdomen 8.00 Sternum 7.31 Abdomen 7.45 Abdomen 5.53 Abdomen 5.86 Abdomen 
4.37 Sternum 7.00 Abdomen 6.02 Sternum 4.73 Ear 4.49 Hind Legs 4.59 Sternum 
4.29 Ear 3.50 Ear 5.40 Ear 4.50 Sternum 4.45 Sternum 4.48 Ear 
4.29 Neck 3.50 Neck 3.64 Neck 3.86 Neck 4.42 Ear 4.32 Hind Legs 
4.29 Head 3.50 Head 3.40 Head 3.86 Head 4.29 Head 4.21 Neck 
4.29 Front Legs 3.50 Front Legs 3.40 Front Legs 3.86 Front Legs 4.29 Front Legs 4.19 Head 
4.29 Hind Legs 3.50 Hind Legs 3.40 Hind Legs 3.86 Hind Legs 4.27 Neck 4.19 Front Legs 

N
ym

p
h

s -- -- -- -- 5.17 Ear 5.86 Ear 4.52 Ear 4.65 Ear 
-- -- -- -- 4.64 Abdomen 5.86 Abdomen 4.50 Abdomen 4.57 Abdomen 
-- -- -- -- 4.52 Sternum 4.05 Sternum 4.50 Sternum 4.48 Sternum 

L
ar

va
e 

-- -- -- -- 8.00 Ear 6.41 Ear -- -- 4.90 Ear 
-- -- -- -- 4.50 Sternum 4.23 Sternum  -- -- 4.49 Sternum 

-- -- -- -- 4.36 Head 4.23 Head -- -- 4.47 Head 
-- -- -- -- 4.05 Abdomen 4.23 Abdomen  -- -- 4.45 Abdomen 
-- -- -- -- 4.02 Front Legs 4.23 Front Legs -- -- 4.45 Front Legs 

M
at

in
gs

 5.12 Abdomen 7.50 Abdomen 6.14 Abdomen 7.05 Abdomen 5.00 Abdomen 5.23 Abdomen 
4.48 Sternum 6.00 Sternum 5.14 Sternum 4.14 Sternum 4.47 Sternum 4.53 Sternum 
4.40 Ear 3.75 Ear 4.83 Ear 4.14 Ear 4.47 Ear 4.47 Ear 
4.40 Front Legs 3.75 Front Legs 3.98 Front Legs 4.14 Front Legs 4.43 Front Legs 4.36 Front Legs 
4.40 Hind Legs 3.75 Hind Legs 3.98 Hind Legs 4.14 Hind Legs 4.43 Hind Legs 4.36 Hind Legs 
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with significant differences (P < 0.05) in their preferred feeding sites. In May/June 

most larvae were found on the ears followed by sternum, head and abdomen. Simi-

larly, in September/October the ears were clearly preferred. 

Nymphs were found on roe deer in May/June, September/October and Novem-

ber/December, whereby significant feeding site preferences (P < 0.05) were ob-

served during May/June and September/October. During these periods, nymphs 

preferred the ears followed by the abdomen. In contrast to this, female ticks were 

found on roe deer throughout the year, primarily selecting the abdomen (P < 0.05), 

except for March/June when females showed a slight preference for the sternum 

over the abdomen. The sternum was ranked second for females during January/Feb-

ruary and May/June, while for September/October it was replaced by the ears and 

for November/December by the hind legs. The feeding site distribution of male Ix-

odes on roe deer was comparable to that of the female ticks: males preferred the 

abdomen, followed by sternum, except for September/October when the ears were 

ranked second and during November/December with the hind legs were ranked af-

ter the abdomen. Thus adult ticks selected the abdomen and the sternum as their 

favorite attachment and feeding sites, while the ears were more frequented in Sep-

tember/October and the hind legs during November/December. 

Overall, the ticks on roe deer significantly preferred the abdomen during winter 

(November to February), but tended to sternum and ear during warmer months 

(March to June). Mating occurred predominantly at the abdomen and sternum, fol-

lowed by the ear, with no seasonal variation present. For the total study period, the 

abdomen, ear and sternum were the top ranked attachment sites for all ticks. Males 

and females primarily preferred the abdomen, followed by the sternum, while 

nymphs and larvae choose the ear as their primary feeding site. 
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For the test of the IFDH on ticks from roe deer, Pearson's correlation coefficients 

(males: 𝜌 = 0.542, P < 0.001; females: 𝜌 = 0.248, P < 0.001, nymphs: 𝜌 = 0.608, P < 

0.001, larvae: 𝜌 = 0.423, P < 0.001) and the regression analyses in Figure 4.21 show 

that in relation to each tick life stage/sex the percentage of ticks attached to the top 

ranked body part increased with the total number of the same life stage/sex found 

on the entire host body in a highly significant manner. 

Ticks on wild boar were predominantly found on the abdomen (see Table 4.15) 

throughout the total period of sampling, although male ticks and nymphs were 

mainly found on the ears, which ranked second for female ticks. Ticks from wild boar 

were not found at the head, neck, front or hind legs or on the main body. Significant 

differences in feeding site selection were detected between May/June and Novem-

Figure 4.21: Regression analysis for roe deer showing the relation between the percentage 
of tick life stage/sex using the preferred attachment site and the total number of the same 
life stage/sex on the entire host body. 
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ber/December, with the ears ranking first in the warm months. In winter (Novem-

ber/October) the abdomen was the primary feeding site. Females slightly preferred 

the sternum second to the abdomen during November/December. 

The correlation and regression analyses for the test of the IFDH on ticks sampled 

from wild boar did not deliver acceptable results due to the limited number of ecto-

parasites found. 

4.1.8 Niche breadth analysis 

During the total study period, adult female ticks showed the lowest specialization in 

their selection of the feeding site on roe deer, followed by larvae and adult male ticks 

(see Table 4.16). Nymphs were most specialized in their choice of feeding site. How-

ever, a paired t-test showed that niche indices differed significantly only between 

males and females (t = -4.322, df = 78, P < 0.001), females and nymphs (t = 2.568, df 

= 12, P = 0.025) and females in comparison with larvae (t = 3.881, df = 26, P = 0.001). 

In contrast to this, there were no significant differences between the Levin indices 

Table 4.15. Friedman test for tick densities showing the mean rank for wild boar body parts 
with respect to each season and for the total study period. 

 May/Jun Sep/Oct Nov/Dec Study 

Ticks 6.83 Ear 5.10 Sternum 4.64 Abdomen 4.61 Abdomen 

4.17 Sternum 5.10 Abdomen 4.53 Sternum 4.53 Ear 

4.17 Abdomen 4.30 Ear 4.51 Ear 4.52 Sternum 

Adults 6.83 Ear 5.20 Sternum 4.64 Abdomen 4.60 Abdomen 

4.17 Sternum 4.40 Ear 4.53 Sternum 4.53 Ear 

4.17 Abdomen 4.40 Abdomen 4.51 Ear 4.53 Sternum 

Males 5.67 Ear -- -- 4.51 Abdomen 4.51 Ear 

4.33 Abdomen -- -- 4.50 Ear 4.51 Abdomen 

Fe-
males 

6.83 Ear 5.20 Sternum 4.64 Abdomen 4.60 Abdomen 

4.17 Abdomen 4.40 Abdomen  4.53 Sternum 4.53 Sternum 

4.17 Sternum 4.40 Ear 4.51 Ear 4.53 Ear 

Nymp
hs 

5.67 Ear 5.20 Abdomen -- -- 4.51 Ear 

4.33 Abdomen 4.40 Ear -- -- 4.51 Abdomen 
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of males and nymphs, males and larvae or between nymphs and larvae. Taking sea-

sonal differences of attachment sites into consideration, the widest niche breadth 

overall was detected in May/June 2013 as well as in May/June 2012, followed by 

March/April 2012 and in July/August 2012 (see Table 4.16).  

Female ticks showed the lowest specialization followed by males. Consequently, 

adult ticks showed less specialization in their feeding site selection than nymphs 

and larvae. An exception was the period between May and June 2013 when larvae 

showed a wide niche breadth, whereas nymphs were very specialized in their at-

tachment site choice. As shown by the results of the seasonal analysis using the GLM 

in Table 4.17, niche breadth of female ticks was significantly higher from March to 

August compared to the reference season, i.e. the months November and December. 

In particular, in May and June these differences were highly significant (P < 0.001). 

For males, the niche breath from March to June was also significantly higher than 

during the colder months (September to February). In contrast to this, nymphs and 

Table 4.16. Monthly averaged standardized Levin index of niche breadth for roe deer with 
respect to each study period and for the total study. 

 Sep/Oct 2011 Nov/Dec 2011 Jan/Feb 2012 Mar/Apr 2012 May/Jun 2012 Jul/Aug 2012 Sep/Oct 2012 

Ticks 0 ± 0 0.005 ± 0.023 0.016 ± 0.044 0.136 ± 0.006 0.158 ± 0.072 0.025 ± 0.000 0.076 ± 0.050 

Adults 0 ± 0 0.005 ± 0.023 0.016 ± 0.044 0.136 ± 0.006 0.103 ± 0.083 0.143 ± 0.000 0.042 ± 0.083 

Males 0 ± 0 0 ± 0 0.038 ± 0.054 0.070 ± 0.070 0.048 ± 0.058 × 0 ± 0 

Females 0 ± 0 0.006 ± 0.029 0.017 ± 0.045 0.121 ± 0.007 0.105 ± 0.084 0.143 ± 0.000 0.044 ± 0.087 

Nymphs × × × × × 0 ± 0 0.026 ± 0.047 

Larvae × × × × 0.002 ± 0.008 0 ± 0 0 ± 0 

 Nov/Dec 2012 Jan/Feb 2013 May/Jun 2013 Sep/Oct 2013 Nov/Dec 2013 Jan/Feb 2014 Study 

Ticks 0.018 ± 0.044 0 ± 0 0.109 ± 0.084 0 ± 0 0.008 ± 0.029 0 ± 0 0.038 ± 0.068 

Adults 0.019 ± 0.044 0 ± 0 0.157 ± 0.137 0 ± 0 0.008 ± 0.029 0 ± 0 0.033 ± 0.070 

Males 0.007 ± 0.031 0 ± 0 0.100 ± 0.076 0 ± 0 0.007 ± 0.023 0 ± 0 0.018 ± 0.046 

Females 0.024 ± 0.052 0 ± 0 0.156 ± 0.138 0 ± 0 0.011 ± 0.035 0 ± 0 0.035 ± 0.073 

Nymphs 0 ± 0 × 0.005 ± 0.005 × × × 0.016 ± 0.037 

Larvae × × 0.090 ± 0.122 × × × 0.024 ± 0.072 

 × = tick live history stage not found    
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larvae showed no significant differences with respect to the niche breadth. Never-

theless, for the entirety of the collected ticks the niche breadths of the months March 

to June, September and October were significantly different to the reference season. 

Due to the low total number of ticks found on wild boar the computation of the Levin 

index and the subsequent estimation of the GLM did not deliver reasonable results. 

Therefore, an analysis of the niche breath and the evaluation of the spatial feeding 

site overlap, presented in the following section, was not conducted for the ticks from 

wild boars. 

4.1.9 Spatial niche overlap 

Niche overlap using Pianka's index was determined for the different tick life history 

stages and sexes on roe deer (Table 4.18). The highest niche overlap for the total 

sampling period was found between male and female ticks (0.72), followed by 

nymphs-larvae, females-larvae, males-larvae, females-nymphs and males-nymphs. 

For the individual sampling seasons, the highest overlap between males and females 

was observed during May/June 2012 and 2013. Similar peaks during May and June 

in existed for all other tick life stage/sex constellations. The high significances were 

verified by the GLM (Table 4.19).  

Table 4.17: Results of the estimated GLMs describing the variances of niche breadth 
(Levin index) for each tick life history stage and sex on roe deer. 

 Ticks Adults Males Females Nymphs Larvae 

Intercept 0.011* 0.011 0.005 0.013 0.000 0.000 
Jan/Feb 0.003 0.003 0.008 -0.006 × × 

Mar/Apr 0.125*** 0.125** 0.065* 0.108* × × 

May/Jun 0.131*** 0.108*** 0.059*** 0.107*** 0.005 0.032 
Jul/Aug 0.015 0.132* × 0.129* -0.000 0.000 
Sep/Oct 0.051*** 0.024 -0.005 0.023 0.025 0.000 
Nov/Dec 

ª 
0.000 0.000 0.000 0.000 0.000 × 

ª Reference period; × no tick life stage/sex found; Significances: * P < 0.05; ** P < 0.01; *** P < 0.001 
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In addition, females, nymphs and larvae showed a significantly increased overlap in 

September/October compared to the reference months November and December. 

However, the strongest niche overlap on roe deer appeared during July and August 

between nymphs and larvae (P < 0.001). For other months and life stage/sex con-

stellations no significant changes in the spatial feeding site overlap were detected. 

Thus niche overlap seems be positively associated with the warm summer months 

(May to August). 

Table 4.18: Pianka’s index of spatial niche overlap for ticks on roe deer with respect to each 
study period and for the total study. 

 Sep/Oct 2011 Nov/Dec 2011 Jan/Feb 2012 Mar/Apr 2012 May/Jun 2012 Jul/Aug 2012 Sep/Oct 2012 

Adults- 
Nymphs 

× × × × × 0 ± 0 0.257 ± 0.487 

Adults- 
Larvae 

× × × × 0.301 ± 0.371 0 ± 0 0.210 ± 0.395 

Males- 
Females 

0 ± 0 0.195 ± 0.391 0.116 ± 0.491 0.716 ± 0.716 1.115 ± 1.965 × 0 ± 0 

Males- 
Nymphs 

× × × × × × 0 ± 0 

Males- 
Larvae 

× × × × 0.321 ± 0.437 × 0 ± 0 

Females- 
Nymphs 

× × × × × 0 ± 0 0.209 ± 0.392 

Females- 
Larvae 

× × × × 0.281 ± 0.359 0 ± 0 0.210 ± 0.395 

Nymphs- 
Larvae 

× × × × 0 ± 0 1.000 ± 0.000 0.251 ± 0.408 

 Nov/Dec 2012 Jan/Feb 2013 May/Jun 2013 Sep/Oct 2013 Nov/Dec 2013 Jan/Feb 2014 Study 

Adults- 
Nymphs 

0 ± 0 × 0.251 ± 0.255 × × × 0.016 ± 0.120 

Adults- 
Larvae 

× × 0.362 ± 0.323 × × × 0.035 ± 0.160 

Males- 
Females 

0.049 ± 0.226 0 ± 0 1.195 ± 1.891 0 ± 0 0.060 ± 0.417 0 ± 0 0.179 ± 0.720 

Males- 
Nymphs 

0 ± 0 × 0.195 ± 0.324 × × × 0.006 ± 0.063 

Males- 
Larvae 

× × 0.223 ± 0.312 × × × 0.024 ± 0.142 

Females- 
Nymphs 

0 ± 0 × 0.246 ± 0.253 × × × 0.015 ± 0.103 

Females- 
Larvae 

× × 0.372 ± 0.333 × × × 0.034 ± 0.158 

Nymphs- 
Larvae 

× × 0.518 ± 0.459 × × × 0.028 ± 0.159 

× = at least one live history stage not found 
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Table 4.19: Results of the parameter estimation using GLMs analyzing the variance of the 
spatial niche overlap (Pianka’s index) between different constellations of tick life history 
stages and sexes on roe deer. 

 
Males-

Females 
Males-

Nymphs 
Males-
Larvae 

Females- 
Nymphs 

Females-
Larvae 

Nymphs-
Larvae 

Intercept 0.100* 0.000 -0.000 -0.000 0.000 -0.000 
Jan/Feb -0.051 0.000 0.000 0.000 0.000 0.000 
Mar/Apr 0.616 -0.000 0.000 0.000 -0.000 0.000 
May/Jun 1.042*** 0.065*** 0.288*** 0.082*** 0.312*** 0.173*** 
Jul/Aug -0.100 -0.000 0.000 0.000 - 0.000 1.000*** 
Sep/Oct -0.100 0.000 -0.000 0.171*** 0.172*** 0.206*** 

Nov/Decª 0.000 0.000 0.000 0.000 0.000 0.000 
ª Reference period; Significances: * P < 0.05; ** P < 0.01; *** P < 0.001 
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4.2 Discussion 

The necessity for long-term studies in parasite and vector ecology using a suffi-

ciently large sample size to allow a comprehensive statistical evaluation has been 

confirmed by my study. Only such studies can provide generally valid, raw data able 

to evaluate the seasonal and annual dynamics of the epidemiology of tick-borne dis-

eases. For example, the high larval abundance on roe deer in May 2013 was signifi-

cantly different from that of the other year of the study. 

4.2.1 Ticks on roe deer 

4.2.1.1 Tick species and life history stages 

I. ricinus was the dominant species on roe deer in several other European studies 

(Tälleklint and Jaenson 1997, Carpi et al. 2008, Skotarczak and Adamska 2008, 

Kiffner et al. 2010a, Vor et al. 2010, Vázquez et al. 2011, Handeland et al. 2013). 

However, single findings of D. marginatus, D. reticulatus and I. hexagonus on roe deer 

have been reported (Tälleklint and Jaenson 1997, Dautel et al. 2006, Vor et al. 2010, 

Vázquez et al. 2011). Recent studies using drag sampling and sampling from sheep 

(Moser 2012, Neumaier 2012) showed that D. marginatus occurs in my sampling 

areas in the Bienwald. Although the sampling period of my study included the main 

activity phase of D. marginatus (from March to April), the finding of only a single 

unattached female D. marginatus, suggests that roe deer do not play an important 

role for this species. This finding confirms that I. ricinus is the dominant species on 

roe deer. 

My results show that ticks were active on roe deer throughout the sampling period. 

All tick life history stages were found, with adult females being the most frequent 

making up almost 50% of the total tick infestation. Other authors found that nymphs 

(Carpi et al. 2008, Kiffner et al. 2010a, Vor et al. 2010, Handeland et al. 2013) or 

males (Vázquez et al. 2011) were more common on roe deer than females. In com-

parison to my study, their approaches used significantly shorter sampling periods, 

seasonal sampling periods and/or collected ticks from individual body parts (e.g. 
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ears, head or legs) only. Consequently, it is possible that their results were biased 

towards a specific life history stage. By contrast, my finding relies on coherent long-

term sample acquisition and on the collection of ticks from the entire roe deer body. 

The dominance of female I. ricinus supports the hypothesis that roe deer provide 

sufficient quantities of blood for egg production for large numbers of female ticks 

(see Section 2.2.5), although this host species also is an important host for all other 

life history stages.  

The results of the multinomial logistic regression model show significant effects of 

host species, sex and body part and sampling period on the composition of the tick 

population (see Section 4.1.6). However, the model confirmed, that independently 

of host sex, body mass and attachment site, female ticks made up the largest part of 

the tick population on roe deer. Only seasonal influences led the proportions of im-

mature stages to increase during the warmer months (May to September). A similar 

analysis with respect to host species, age and month was conducted by Handeland 

et al. (2013) for ticks collected from only the ears of free-ranging moose (Alces alces), 

red deer and roe deer in Norway, albeit for a considerably shorter sampling period 

and without the differentiation between female and male ticks. Similar to my model, 

they reported significant interactions between host species and sampling period 

with respect to the composition of the tick population. For roe deer, they described 

the relative maxima of larvae and adults occurring during August and September. 

Although my study had a longer total sampling period, the maximum for larvae also 

occurred consistently during these two months. 

Moreover, Handeland et al. (2013) found a significant increase in the proportion of 

adult ticks with increasing host size, represented by species and age. The reverse 

was true for the nymphs. In contrast to this, the age of roe deer did not significantly 

influence the composition of the tick population in my model directly. However, I 

was able to determine a significant increase of larval proportions with body mass. A 

higher body mass could be related to healthier adult animals with increased home 

ranges, which therefore have a higher probability of contacting larvae, which have a 
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very limited movement range (see Section 4.2.1.3). Handeland et al. (2013) also re-

ported larger proportions of nymphs on the ears than predicted by my models. Nev-

ertheless, in comparison to the rest of the body the ears of roe deer carried propor-

tionally the highest number of immature stages. This suggests that attachment sites 

have a major influence on the relative proportions and on the absolute intensity of 

ticks. 

4.2.1.2 Tick infestation intensity 

The mean tick intensity in my study was 6.4 ± 21.8 ticks reaching its maximum in 

May 2013 with 171.7 ± 63.2. Kiffner et al. (2010a) reported that the mean tick bur-

den on roe deer was 64.5 ± 10.6, Vázquez et al. (2011) found a mean intensity of 

43.2 ± 49.8 tick per roe deer, Handeland et al. (2013) had an average tick abundance 

on the ears of 25.0 and Carpi et al. (2008) reported that the mean number of nymphs 

from roe deer forelegs was 36.0 ± 5.2. For my data, the mean intensities are thus 

distinctly lower than those reported by others. However, the reported peak intensi-

ties for individual months were equally high or even higher in my study. There are 

multiple reasons that could lead to deviations in the average tick abundances be-

tween different studies, such as the sampling approach, seasonal dynamics caused 

mainly by climatic changes, prevailing vegetation within the sampling areas, as well 

as the size and the composition of host populations. For example, driven hunts were 

carried out during the cold periods leading to a higher sample size between Novem-

ber and January and thus to a reduction of average tick infestation intensity. Expect-

ably, low abundances of ticks on roe deer in winter were also described by Kiffner 

et al. (2011c), while they tried to achieve a consistent sample size over the year that 

lay between 8 and 20 roe deer per month. On the other hand, Vázquez et al. (2011), 

Handeland et al. (2013) and Carpi et al. (2008) sampled over significantly shorter 

periods including the warmer months with higher tick activity (Randolph et al. 

2000). Moreover, the latter two studies collected only samples from body parts (ears 

and forelegs) that showed high tick infestations in other studies (Kiffner et al. 2011a, 

Pacilly et al. 2014), such that tick activity on the other body parts can only be esti-

mated with a bias towards higher abundances.  
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All of these facts suggest that a more detailed investigation of tick abundances is 

required in order to reveal the complex interactions between factors affecting tick 

burden and to allow a differentiated comparison of the tick infestation intensities 

over multiple studies. 

4.2.1.3 Aggregation 

The nymphs and larvae from roe deer appeared highly aggregated (k = 0.02 and k = 

0.03, respectively). This result is clearly confirmed by my decision tree analyses (see 

Section 4.1.4) and underlines similar observations for immature ticks on cervids 

(Kiffner et al. 2010b, Pacilly et al. 2014) and smaller mammals (Tälleklint and 

Jaenson 1997, Kiffner et al. 2011c). Tälleklint and Jaenson (1997) observed an ag-

gregated distribution for all life history stages of I. ricinus on roe deer. One of the 

main reasons for the aggregation of ticks on a few host seems to be the spatial 

clumping of questing ticks (Shaw et al. 1998, Wilson et al. 2002). In particular, for 

questing nymphs and larvae the degree of aggregation could be an indicator for spa-

tial variation, as well as for limited seasonal activity (Randolph 2004). I. ricinus lar-

vae commonly appear in “nests” (sites where females lay their eggs) within the leaf 

litter (Petney et al. 2011) and have a very limited range of movement (Mejlon and 

Jaenson 1997). The spatial locality of larvae could have the effect that only few po-

tential hosts pass their questing positions resulting in an increased aggregation. 

On the other hand, by means of the decision tree analysis, I was able to determine 

that for yearlings the lowest levels of aggregation were reached for all tick life his-

tory stages, in particular for immatures. The reason for this might lie in roe deer 

dispersal patterns that show increased mobility and home-ranges for yearlings in 

comparison to older roe deer (Pettorelli et al. 2003). This behavior could positively 

influence the probability of yearlings passing clumps of questing immature ticks. 

The results of the CHAID analysis also suggests that a worse physical condition of 

hosts supports the aggregation of nymphs and larvae. To a slightly lower extend this 
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seems also to be true for male and female ticks. This observation could be inter-

preted such that a poor host condition leads to a reduced movement range and thus 

to higher aggregation of the parasites on fewer deer (see Section 4.2.1.6). 

4.2.1.4 Seasonal and annual dynamics 

The intensities of infestation, ranging from 0 to 261 tick per roe deer, also corrobo-

rate the data presented by Randolph (2004), where ticks showed a high interannual 

variability (cf. Vor et al. 2010). With respect to the seasonal dynamics, I observed 

high tick activity of all life history stages from April to September (100%) with an 

intensity peak during spring, while during winter tick prevalences reached a mini-

mum of 12.5%. Adult ticks peaked earlier in April, while the highest average inten-

sity for nymphs was recorded in May, followed by a second peak in August. A second 

peak for adult life history stages was observed in September. The highest peak for 

larvae was during May with a second smaller one in August, while no larvae and 

nymphs were found from November to April and from December to April, respec-

tively (see Section 4.1.1). The intensity peaks correspond to the findings for roe deer 

made by other authors (Walker et al. 2001, Carpi et al. 2008, Scharlemann et al. 

2008, Tagliapietra et al. 2011, Vázquez et al. 2011, Handeland et al. 2013). However, 

in the study of Vor et al. (2010) larvae peaked later in July with prevalences between 

57.4% in autumn and 100% in spring. Nevertheless, my study is the only one that 

compares results from 3 subsequent years demonstrating that tick abundance on 

roe deer not only follows seasonal changes, but also can have a high variability for 

the same season but between years within a single habitat. 

The seasonal and annual variations in the tick burden of the different life history 

stages on roe deer can be explained by climatic changes (see Section 4.2.1.5) as well 

as by variations of host parameters (see Section 4.2.1.6). Additionally, the climatic 

dependence of host migration behavior (Morellet et al. 2013), body mass and popu-

lation density (Mysterud and Østbye 2006b) might support the effects of climate and 

thus amplify the changes of tick burden on roe deer. 
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4.2.1.5 Climatic factors 

The seasonal patterns of tick activity on roe deer are explained by Vázquez et al. 

(2011) using the corresponding climatic variables. Estrada-Peña has confirmed that 

abiotic factors, like ambient temperature and relative air moisture, are most im-

portant and vital factors for tick development also in Spain (Estrada-Peña 2001, 

Estrada-Peña and Venzal 2007). These factors have also been identified by others 

(Harvell et al. 2002, Gray et al. 2009, Gilbert 2010) in association with the effects of 

climate change on tick burden. In laboratory experiments, Randolph et al. (2002) 

showed that all stages of I. ricinus developed more rapidly with increasing temper-

atures, while Gern et al. (2008) proposed that for spring fed ticks high summer tem-

peratures could lead to a second peak in autumn. This second intensity peak in Sep-

tember for immature tick life history stages on roe deer has been confirmed (Section 

4.1.1).  

Temperature: In addition, my correlation analyses (see Section 4.1.3) corrob-

orate a highly significant positive linear relationship between tick burden and air 

temperature. Other temperature related parameters (positive correlation: min. and 

max. air temperature, sunshine duration; negative correlation: cloud coverage) 

were mostly significant for all life history stages. With the decision trees for males, 

females and nymphs, I was able to identify a rough temperature threshold of be-

tween 8 and 9 °C, above which the infestation intensity of roe deer increased signif-

icantly (Section 4.1.4). The boxplots in Section 4.1.5 for all life history stages confirm 

that the critical temperature for males and females was 8 °C, while for nymphs and 

larvae a higher temperature threshold of 9 °C was determined. The studies of Kiffner 

et al. (2010b) and Tagliapietra et al. (2011) found different temperature thresholds 

on deer, which are higher for larvae (10 °C) than for nymphs (7-8 °C). Perret et al. 

(2007) suggested that a temperature threshold of 7 °C could be employed to predict 

the emergence of ticks in different areas.  

During my sample acquisition single male and female ticks were found at tempera-

tures as low as -1.8 °C and very few nymphs and larvae were active at temperatures 



Tick burden - Discussion 

158 

lower than 5.1 °C and 7.2 °C, respectively. Critical temperatures for the questing ac-

tivity of I. ricinus adults have been reported between -0.6 °C and 5 °C (Sixl and Josek 

1971, Duffy and Campbell 1994, Duffy et al. 1994, Schulze et al. 2001). For nymphal 

activity the critical temperature has been reported to be 2 °C (Sixl and Josek 1971, 

Hubálek et al. 2003). My finding of adult ticks during the winter months is the first 

reporting of I. ricinus activity on roe deer at such low temperatures. Moreover, this 

observation shows that ticks in the Bienwald are active all-year. 

The GAMLSS models developed here increase our understanding of the relations 

found above. All models included a temperature term showing the strong relation 

between ticks and climate, such that a clear trend with few ticks at low temperatures 

and an increase of intensity with rising temperature was present. In all models, male 

tick burden always increased in a significant linear fashion with temperature, while 

female and larval tick burden did not increase further beyond 10 °C. Nymphs, on the 

other hand, showed a bimodal behavior (peaks at 10 °C and 17 °C) with temperature 

(Section 4.1.5). This observation underlines the bimodal seasonal pattern observed 

for nymphs on roe deer. For the other three life history stages, the models did not 

identify a bimodal pattern of mean tick intensity in relation to temperature. One ex-

planation for this behavior could be that the peaks during spring and/or autumn 

were more pronounced for nymphs than for females, males and larvae (see Section 

4.1.1). However, for larvae a slight bimodality at 10 °C and 16 °C was observed for 

the modeling of the dispersion term, which could be an indication for bimodal sea-

sonal behavior of larvae. In contrast to the models of Kiffner et al. (2011b) in which 

two intensity peaks appeared for adult ticks in relation temperature and not for 

nymphs, my models support to the bimodal seasonal pattern of nymphal behavior 

(Randolph 2004). This difference could be related to other environmental features 

or host community related parameters intrinsic to the different sampling areas. 

Relative humidity: In addition to temperature, negative correlations have been 

reported for host seeking I. ricinus on vegetation in relation to relative humidity 

(Jensen 2000, Perret et al. 2000, 2004, Randolph et al. 2002, Hubálek et al. 2003, 
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Schwarz et al. 2009). For small mammals a significant decline of Ixodes spp. larvae 

infestations with increasing relative humidity was found (Boyard et al. 2008, Kiffner 

et al. 2011c). In the present study the daily average relative humidity was negatively 

correlated with tick abundance on roe deer at a highly significant level not only for 

larvae, but also for male and female ticks (see Section 4.1.3).For the first time, my 

study employed decision tree analysis on a sample population large enough to de-

termine an activity threshold in relation to relative humidity for I. ricinus larvae. The 

results of the CHAID tree suggest that relative humidity plays an outstanding role 

for larvae on roe deer, such that a relative humidity above 80.4% reduces the infes-

tation intensity significantly (0.052 ± 0.518 vs. 1.958 ± 3.632).  

These observations stand in contrast to the results of the feeding experiments con-

ducted by Randolph and Storey (1999), in which larvae did not quest high in the 

vegetation and contacted fewer rodents at low levels under drier conditions, while 

a higher relative humidity increased larval mobility and questing height allowing 

the ticks to feed on larger hosts. Nevertheless, it has also been suggested that larvae 

in particular are less mobile under wet conditions (Perret et al. 2003), that suffi-

ciently wet conditions might lead to increased tick mortality (Randolph 2004) and 

that ticks might be positively affected by humidity only until an optimal value is 

reached (Tagliapietra et al. 2011). The combination and the interdependencies of 

the three effects, reduced mobility, increased mortality and optimal hydration, could 

be an explanation for the humidity threshold determined here by the CHAID analysis 

and the negative correlation between larval burden and relative humidity. 

Saturation deficit: Various recent studies suggest that saturation deficit is a 

very important factor for the behavior and mortality rate of ticks (Randolph and 

Storey 1999, Perret et al. 2000, 2003, 2004, Randolph 2004, Gern et al. 2008, Gray 

et al. 2009, Tagliapietra et al. 2011). In quasi-natural arenas, Randolph and Storey 

(1999), and in the field Perret et al. (2000), recognized that a higher saturation def-

icit reduced the number of questing I. ricinus ticks along with a higher energy loss of 
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the ticks shortening their life span. Perret et al. (2003) observed that questing dura-

tion is inversely related to saturation deficit and that the effect of desiccation is more 

serve for nymphs than for the adult life stages (Perret et al. 2000). A high saturation 

deficit forces ticks to move from their questing position into quiescence on the 

ground to rehydrate (Gern et al. 2008). For ticks collected from deer, Tagliapietra et 

al. (2011) found out that saturation deficit was a key factor affecting nymphal abun-

dance and predicting most of its variation. The correlation analyses conducted here 

(see Section 4.1.3) for spring underline the behavior described above. In May and 

June, nymphs were significantly negatively correlated with saturation deficit. For 

males and females, no significant correlations with respect to saturation deficit were 

detected. However, during autumn (Sep/Oct) larval infestation increased signifi-

cantly with rising saturation deficits. This finding is in contrast to the studies of 

Randolph and Storey (1999), in which larvae avoided desiccation by moving into the 

litter layer and becoming quiescent. On the other hand, the results of Perret et al. 

(2003) indicate that higher saturation deficits lead to a larger distance traveled by 

ticks after quiescence. This might provide an explanation for the increased larval 

burden in the present study. 

Precipitation: In addition to this, all models estimated by the GAIC-based pa-

rameters selection strategy included precipitation depth for all tick life history 

stages. High rainfalls above 2 mm and 4 mm have a negative influence on adult and 

immature tick burden, respectively, although a significant effect was only detected 

for female ticks (see Section 4.1.5). However, for females and larvae an increase in 

tick infestation was detected with precipitation above 7 mm and 12 mm, respec-

tively. High precipitation depths during the study period were observed in winter 

and spring, particularly during May 2013 (see Section 4.1.5). Consequently, the non-

linear relationship between ticks and rainfall revealed by the models can be inter-

preted twofold: (1) high rainfall can be seen as an indicator for the cold season and 

therefore reduced tick life history stage abundances, and (2) rain during spring sup-

ports tick hydration and leads to an increased tick occurrence. This non-linearity of 



 Tick burden - Discussion 

 161 

the seasonal patterns might be the reason why only the GAMLSS models include pre-

cipitation depths in comparison to the other statistical analyses. However, previous 

model-driven tick research on roe deer (Carpi et al. 2008, Kiffner et al. 2010a, 2011b, 

Vor et al. 2010, Tagliapietra et al. 2011, Handeland et al. 2013) did not consider rain-

fall in their analysis, making my study unique. By the use of the GAMLSS approach, I 

was able to show that precipitation plays an important role for ticks on roe deer and 

that such complex, non-linear effects can be revealed and better understood through 

an adequate modeling technique. 

4.2.1.6 Host parameters 

Host sex: With respect to biotic factors, there exists the hypothesis that tick 

parasitism might be sex-biased (Poulin 1996, Zuk and McKean 1996, McCurdy et al. 

1998, Ferrari et al. 2003). In particular for white-tailed deer (Odocoileus virginianus) 

in the USA, many studies report a male-biased abundance of Ixodes spp. (Schulze et 

al. 1984, Kitron et al. 1992, Schalk and Forbes 1997, Schmidtmann et al. 1998). For 

roe deer in Spain, Vázquez et al. (2011) determined host sex as the most important 

factor influencing tick prevalence, while in German studies this factor was only mar-

ginally significant suggesting only a weak influence on the overall tick burden 

(Kiffner et al. 2011b), or that both roe deer sexes were almost equally infested (Vor 

et al. 2010). The GAMLSS models of Kiffner et al. (2011b) considered host sex for the 

immature tick life history stages, but not for male and female ticks. However, they 

suggested that host sex might play only a minor role in tick abundances on roe deer. 

In contrast to this, my results indicate that the sex of roe deer has an influence on 

tick abundance, such that male deer had significantly more ticks than female ani-

mals. This observation is also underlined by the decision trees for males, females 

and larvae, which also included host sex. In particular, for adult ticks host sex seems 

to be a key factor since it appears at the second level of the decision trees. The GAM-

LSS models provide and even deeper insight into the interactions between host sex 

and tick life history stage abundance. The models show that host sex plays an im-
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portant role for males, nymphs and larvae. A significantly male deer-biased parasit-

ism was observed for males and larvae. With adult and larval I. ricinus showing a 

male-biased behavior in the CHAID analysis and in the GAMLSS models a sex-de-

pendent parasitism of I. ricinus on roe deer seems to be very likely, although this is 

the first report of such a behavior in a German study. 

There are basically two non-mutually exclusive theories for sex-biased tick behavior 

(cf. Zuk and McKean 1996, Pfäffle 2010): (1) the “exposure” hypothesis, which states 

that sex-specific features and behavior could influence the exposure to parasites 

(Poulin 1996), and (2) the “immunosuppressive” hypothesis suggests that adrenal 

hormones, like testosterone, might affect the intensity of tick infestation (Hamilton 

and Zuk 1982, Folstad and Karter 1992, Schalk and Forbes 1997, Christe et al. 2007). 

On small mammals, the experiments of Hughes and Randolph (2001a, 2001b) 

demonstrated that increased testosterone levels lead to male-biased tick parasitism. 

In accordance to the first hypothesis, Moore and Wilson (2002) found that a sex-bias 

could be a result of size dimorphism, such that parasites prefer the sex having an 

increased body size and mass. The idea behind this is that larger hosts provide more 

resources for the parasites (Perkins et al. 2003). For white-tailed deer, the size di-

morphism between males and females could be the reason for male-based tick par-

asitism (cf. Kiffner et al. 2011b). However, in comparison to white-tailed deer, the 

sexual size dimorphism of roe deer is less strongly pronounced. For my dataset the 

mean body mass of each sex with respect to each age group (t-test for fawns: P = 

0.445; for yearlings: P = 0.069; for adults: P = 0.659) showed no significant differ-

ences. This means that the body mass of coeval male and female roe deer was almost 

equal. Thus, sexual size characteristics alone are unlikely to lead to the sex-biased 

tick behavior on roe deer. 

However, other behavioral patterns might cause the increased tick burden on male 

roe deer. The studies of Sempéré and Lacroix (1982), Blottner et al. (1996) and 

Mysterud (1999) suggest an increased migration behavior of male roe deer during 

spring (May/Jun), occurring simultaneously with a rise in testosterone levels, which 
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was stronger in adult males than in yearlings. This in turn coincides with the results 

of Schalk and Forbes (1997), who found a significant male-bias detected for adult 

hosts, but not for juveniles. My results underline this pattern by showing that adult 

and larval ticks had a higher abundance on adult male roe deer than on younger 

males. Thus, the combined effect of behavioral and hormonal changes suggests that 

a decoupling of the two hypotheses does not seem to make sense for roe deer. 

Host age: Vázquez et al. (2011) observed an age-dependent distribution of tick 

abundance with yearlings having higher prevalences than adults and fawns, 

whereby their results did not reach a level of significance. Vor et al. (2010) found 

significant positive correlations between adult tick burden, host age and body mass. 

On the other hand, they found a decrease in the number of Ixodes spp. larvae with 

rising roe deer age indicted by a significantly negative correlation. They explained 

this by longer resting phases and thinner skin of younger animals. Handeland et al. 

(2013) complemented these results by showing that adult ticks were preferentially 

found on larger cervids, while immature ticks preferred smaller hosts. 

My study confirms the above findings. For yearlings, a significantly higher tick in-

tensity was found than for fawns and adults in relation to all tick life history stages 

(see Section 4.1.1). The CHAID analysis of the host parameters ranked host age as 

the most important factor for tick abundance, whereby yearlings where always sep-

arated from other individuals with significantly more ticks (Section 4.1.4). Moreo-

ver, the automatic parameter selection strategy included host age into the GAMLSS 

models of all tick life history stages. Tick intensity was estimated to be the lowest on 

fawns, while yearlings showed higher infestation for male, female and nymphal I. 

ricinus ticks. As host age was only significant for males and nymphs, its effect seems 

to be less important for females and larvae. 

An explanation for my findings could be that adult ticks quest higher up in the veg-

etation and thus have an increased probability of attaching to larger hosts 

(Randolph 2004). In accordance with the “exposure” hypothesis, this observation 
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could be the reason why yearlings had higher tick abundances than fawns. Another 

explanation could be the immunosuppressive effect of testosterone leading to a tick 

preference towards yearlings. An equivalent argument works for the comparison of 

yearlings and adult roe deer. The lower mobility of adult roe deer (Pettorelli et al. 

2003) might reduce their exposure to ticks in comparison to yearlings. In summary, 

and similarly to sex-biased behavior, it seems that both effects, i.e. exposure and im-

munosuppression, interact when considering roe deer hosts. 

Body mass: Instead of host age, the models obtained by Kiffner et al. (2011b) 

included roe deer body mass suggesting a positive significant effect of host size on 

tick burden. In contrast to this, my simple model for nymphs and the GAIC-based 

models for male and larval I. ricinus showed a negative influence of body mass on 

the tick intensity of roe deer. This behavior stands in contrast to the assumption that 

larger animals provide more resources and could thus host more ticks (Smith et al. 

1990, Pichon et al. 1999, Dobson et al. 2006, Ruiz-Fons et al. 2006, Gern 2008, Pound 

et al. 2010, Kiffner et al. 2011b). A more detailed view of this behavior has been pro-

vided by modeling tick life history stages in relation to body mass of roe deer age 

groups. These results showed the considerable influence of host body mass and re-

veal that the relationships between parasite intensity, tick life stage/sex, host body 

mass and host age are complex and highly non-linear (see Section 4.1.5), such that 

individual studies are needed to find out more about the interactions of these factors 

on roe deer. 

Host condition: The 𝐺𝐷𝑀𝐼𝑠 (see Section 3.3.4) correlated negatively with the 

overall tick burden and, in particular, with I. ricinus nymph numbers. Moreover, the 

CHAID algorithm determined the 𝐺𝐷𝑀𝐼𝑠 as important for tick intensity on female 

fawns and adult deer. This might indicate that animals with a body mass that is in-

creased relative to mean host age and sex have a lower tick abundance, such that 

healthier animals might carry less ticks. In conjunction with this, the correlation 

analyses revealed that a poorer condition or crippled host increases tick infestation 

for females, nymphs and larvae, only males were non-significantly correlated. These 
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patterns are in accordance with the decision trees which reveal the “HasCondition” 

variable as the most important factor for an increased number of nymphs and larvae 

(Section 4.1.4). Two questions arise from these results: (1) are ticks causing health 

problems to roe deer, and (2) do certain roe deer health issues increase tick burden? 

An overview of the negative influence of parasites on the physical condition of hosts 

was given in Pfäffle (2010). Several deer species, including roe deer, are considered 

to be reservoir-incompetent for Borrelia spp. (Nelson et al. 2000, Bhide et al. 2005, 

Gern 2008, Pound et al. 2010, Alonso et al. 2012), but the effect of other tick trans-

mitted diseases is largely unclear for roe deer. Vor et al. (2010) were not able to find 

any signs of deer health problems caused by high tick infestation. For small mam-

mals, e.g. European hedgehogs (Erinaceus europaeus) (Pfäffle et al. 2009), a signifi-

cant blood loss was noticed at high tick densities. This caused regenerative anaemia. 

For roe deer, Tälleklint and Jaenson (1997) estimated a median amount of tick in-

duced potential blood loss at 2.0% of the host’s total blood volume. For only 14% of 

their sampled roe deer was there a blood loss larger than 5%, while for the rest of 

the animals a lower reduction of blood volume was calculated. My estimate of the 

blood loss of roe deer was an order of magnitude smaller (see Section 4.1.1), with 

an average of 0.3%. This relatively low percentage of blood loss is an indicator that 

only very few roe deer suffer from tick induced blood loss.  

With respect to the second question above, my results show that pregnant or nurs-

ing female deer were significantly more heavily infested with I. ricinus than other 

individuals (Section 4.1.1). Pregnancy and lactation increase the energy consump-

tion of female roe deer considerably (Mauget et al. 1997). For fawns the correlation 

coefficients for all tick life history stages and body mass were significantly (P < 0.01) 

negative (females: 𝜌 = -0.393; males: 𝜌 = -0.283; nymphs: 𝜌 = -0.385; larvae: 𝜌 = -

0.376), suggesting that fawns in better condition have less ticks. Moreover, the 

“HasCondition” variable including the infestation of the hosts with other parasites 

as well as deformities correlated negatively with host body condition suggesting a 

higher tick burden on hosts in poorer condition.  



Tick burden - Discussion 

166 

Concurrent infestations of roe deer with other parasites (i.e. Damalinia (syn. Cervi-

cola) meyeri lice and the deer ked fly, Lipoptena cervi) were also observed in Norway 

(Handeland et al. 2013). Hosts in poor condition have fewer resources available than 

healthier ones and have to invest more energy in defensive responses to parasites 

and diseases at the same time (Wilson et al. 2002). This situation causes the infesta-

tion intensities of parasites to co-vary within a host population proportionally to 

host body condition (Wilson 1994, Holmstad and Skorping 1998, Stear and Wakelin 

1998). Moreover, a reduced constitution and decreased mobility might increase at-

tachment success and tick survival on these hosts (Wikel and Bergman 1997, Pfäffle 

et al. 2013). Consequently, my observations on roe deer show for the first time that 

roe deer in a poor physical condition have an increased probability of high tick in-

festation. 

4.2.2 Ticks on wild boar 

4.2.2.1 Species and life history stages 

Only I. ricinus ticks were collected from wild boar. In contrast to roe deer, only little 

research on the tick infestation of wild boar has been conducted. Nevertheless, other 

Central European studies have also reported finding only I. ricinus on wild boar 

(Petrovec et al. 2003, Skotarczak and Adamska 2008, Michalik et al. 2012, Pacilly et 

al. 2014). In contrast, tick sampling in Spain described 8 different ixodid tick species 

parasitizing wild boar, mainly Dermacentor spp., Hyalomma marginatum and Rhip-

icephalus bursa, but only few I. ricinus (de la Fuente et al. 2004, Ruiz-Fons et al. 

2006). Similarly, Selmi et al. (2009) report D. marginatus as the most common spe-

cies on wild boar in Italy. Altogether, these studies indicate that I. ricinus is predom-

inately found on wild boar in temperate areas, while the studies from southern Spain 

and Italy suggest that this species is replaced by D. marginatus in the Mediterranean 

region.  

In relation to the tick life history stages, most of the I. ricinus collected were females, 

followed by nymphs and males, while no larvae and no mating ticks were found on 

wild boar. This distribution is quite similar to findings in Poland (Skotarczak and 
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Adamska 2008). However, quite the contrary was reported by Pacilly et al. (2014), 

where the infestation of wild boar in a Dutch national park during fall 2010 was 

dominated by larvae, followed by nymphs and adults. They did not find male ticks 

on wild boar. Michalik et al. (2012) also reported immatures to be more common on 

wild boar in Poland. One reason for the dominance of immatures over adults in those 

two studies could be seasonal influences due to a shorter sampling period. My re-

sults show that the abundance of nymphs on wild boar was also higher than that of 

adults in September, while the reverse was true for all other months (see Section 

4.1.2). Consequently, it is important to consider the period of sampling and the total 

time of sample acquisition when comparing tick populations of different studies. 

The multinomial logistic regression modelled the composition of a tick population 

from wild boar successfully for the first time (see Section 4.1.6). The results showed 

that the predicted probability of finding immature ticks was significantly lower on 

wild boar than on roe deer. Moreover, an increasing body mass of wild boar reduced 

the chance on finding nymphs even further. Thereby, my models confirm the find-

ings of Skotarczak and Adamska (2008) in which adults ticks were also most abun-

dant on wild boar. Pacilly et al. (2014) found higher proportions of the nymphs on 

the anterior axilla, whereas in my study nymphs where most common on the ears. 

In addition to this, I found that wild boar sex generally did not influence the compo-

sition of the tick population significantly, but male piglets hosted significantly more 

female ticks than female piglets.  

4.2.2.2 Engorgement 

Michalik et al. (2012) describe their I. ricinus as being partially engorged, in contrast 

to Skotarczak and Adamska (2008), who found fully engorged ticks. I found living I. 

ricinus individuals only little engorged, while the fully engorged ones were dead 

(23.9%). One explanation for the large proportion of dead engorged ticks might be 

the wallowing behavior of wild boar (Keuling and Stier 2009a, Morelle et al. 2014), 

which could cause ticks to detach from the host or die through friction. Additionally, 
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the wallowing of wild boar might also be one reason for the significantly lower over-

all tick burden of wild boar in comparison to roe deer. Another explanation for the 

dead ticks on wild boar could by an immune response of wild boar to ticks (see Sec-

tion 4.2.2.7). 

4.2.2.3 Tick infestation intensity 

On average, the infestation intensity on wild boar was low, with 0.13 ± 0.76 ticks per 

animal and an average prevalence of 6.1%, whereby the highest values were 

reached during April and May. Michalik et al. (2012) and Skotarczak and Adamska 

(2008) reported 7.8 and 2.3 ticks per infested animal, respectively. However, the 

prevalence of I. ricinus on wild boar in the latter study was almost equal (6%) to my 

study. 

A study on a managed wildlife population in a Dutch national park and reported 

considerably higher intensities with a mean of 15 ± 9.4 ticks per wild boar (Pacilly 

et al. 2014). Although controlling game densities, in particular of deer, by wildlife 

management is considered as a method for risk reduction with respect to tick infes-

tations (Piesman 2006), the densities of the overall deer populations in the national 

park (in 1998: 11.2 deer per ha) (Kuiters and Slim 2002) were higher than those 

observed for free-ranging big game in the Bienwald (in 2012: 6.0 roe deer per ha) 

(Ehrhart 2012). In general, higher host population densities increase the size of the 

tick population and, therefore, the number of infested hosts (Lindgren et al. 2000, 

Estrada-Peña 2001, LoGiudice et al. 2003, Brownstein et al. 2005, Ruiz-Fons et al. 

2006, Gilbert 2010, Tagliapietra et al. 2011). This is probably one of the main rea-

sons why the Dutch study showed a considerably higher tick burden on wild boar. 

In addition to this, the absence of roe deer within the national park (Pacilly et al. 

2014) could have led to a substitution of roe deer by wild boar for some tick life 

history stages.  
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On the other hand, a mean prevalence of 31% and an average intensity of 13.6 ticks 

per wild boar reported by Ruiz-Fons et al. (2006) appear quite similar to the obser-

vations of Pacilly et al. (2014), but are also distinctly higher than those described 

here. However, in northern Spain the registered intensities were as low as 1.5 ticks 

per boar, although I. ricinus is widely distributed in this region. In comparison to the 

Bienwald, the higher infestation of wild boars in Spain could be a result of climate 

related factors, as observed for roe deer above. 

4.2.2.4 Aggregation 

The wild boar in the Dutch national park (Pacilly et al. 2014) also showed highly 

aggregated tick dispersion, with the highest levels being reached by larvae, followed 

by nymphs. However, in my study, nymphs had the highest levels of aggregation, 

probably because I found no larvae on wild boar. Similarly to roe deer in the Bien-

wald, all three tick life history stages appeared highly aggregated on wild boar. The 

values for 𝑘 were even lower than those of roe deer. Since aggregation is directly 

related to mean tick intensity (see Section 3.3.1), one explanation of the increased 

aggregation of I. ricinus on wild boar is the lower mean tick abundance and preva-

lence in comparison to roe deer. Nevertheless, these observations underline the 

findings and conclusions discussed for roe deer, such that immature tick life history 

stages appear on both species similarly aggregated due to nymphal and larval be-

havioral patterns, in particular through their spatially clumped occurrence. 

4.2.2.5 Seasonal and annual dynamics 

All three life history stages showed an intensity peak in May, whereby nymphs 

showed a second less intense peak during September. These intensity peaks match 

those found for roe deer (Section 4.1.2). In contrast to this, the I. ricinus collected by 

de la Fuente et al. (2004) and by Ruiz-Fons et al. (2006) were all found during winter 

and mainly in autumn, respectively. The reason for this might by the high summer 

temperatures and low relative humidity in their study areas. This is underlined by 

the fact that no I. ricinus were collected from the southern parts of Spain (de la 
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Fuente et al. 2004, Ruiz-Fons et al. 2006) where the position of this species is taken 

by the newly described Ixodes inopinatus (Estrada-Peña et al. 2013). 

4.2.2.6 Climatic factors 

As already discussed for roe deer, one of the main reasons for the seasonal appear-

ance of I. ricinus on game animals is climatically related (Estrada-Peña 2001, 

Estrada-Peña and Venzal 2007). In comparison to roe deer, only little is known 

about the influence of climate on the tick burden of wild boar. The correlation coef-

ficients (Section 4.1.3) for tick intensity in relation to sunshine duration and precip-

itation were significantly positive for all tick life history stages on wild boar. In con-

trast to this, temperature influenced only nymphal burden positively at a highly sig-

nificant level. Cloud coverage and relative humidity were significantly negatively 

correlated with males and nymphs, while females showed no significant correlation. 

During spring, a high saturation deficit was associated with a significant decrease in 

the number of males and nymphs.  

The positive influence of temperature on the total tick abundance on wild boar was 

also confirmed by the GAMLSS model. Although the effect of precipitation did not 

reach a level of significance in the GAMLSS model, I was able to estimate a tick in-

tensity peak for precipitations between 7 and 8 mm (Section 4.1.5). These results 

are in accordance with those from roe deer and could be explained in a similar fash-

ion (cf. Section 4.2.1.5), while they also support the findings of other studies on tick 

questing behavior (Jensen 2000, Perret et al. 2000, 2004, Randolph et al. 2002, 

Hubálek et al. 2003, Schwarz et al. 2009). In summary, I was able to successfully 

apply the GAMLSS modeling approach for tick burden on wild boar for the first time 

to gain a better understanding of the climatic factors of tick infestation. 

4.2.2.7 Host parameters 

Studies on the influence of host parameters in relation to the tick burden on wild 

boar are also largely missing. My study is the first that comprehensively addresses 
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this point. Adult wild boar had the highest tick prevalence (7.2%), followed by year-

lings (6.0%) and piglets (5.6%). However, I. ricinus females and males were most 

prevalent on yearlings and on piglets, respectively, while the prevalence of nymphs 

was highest on adult boar. Piglets were most intensely infested (0.16 ± 0.97), fol-

lowed by yearlings (0.11 ± 0.52) and adults (0.10 ± 0.37). For all three life history 

stages, piglets showed the highest intensity of infestation. 

The higher tick abundance of piglets could be explained by the lower proportion of 

dead ticks found on piglets in comparison to older animals. The higher mortality of 

ticks on yearlings and on adult wild boars could be a first indicator that these age 

groups show an efficient immune response, i.e. an acquired resistance, to ticks. As 

far as known, such a resistance not been reported for wild boar, but for other spe-

cies, for example mice, guinea pigs and cattle (McTier et al. 1981, Jones and Nuttall 

1990, Brossard and Wikel 2004). Another reason for the higher infestation of piglets 

could be that older wild boar have thicker skin which inhibits tick attachment. 

A third reason for the higher infestation of piglets might be the differing behavioral 

patterns of wild boar in relation to age. Wild boar employ three different movement 

strategies: (1) staying and short distance travel, (2) long ranging and (3) any com-

bination of the former two strategies (Morelle et al. 2014). Females with piglets usu-

ally pursue the first strategy. They remain within a limited area and move over short 

distances at various speeds. Keuling et al. (2010) also indicates that piglets have a 

smaller home range than older animals. As a result, the limited, but dynamic mobil-

ity together with the thinner skin of young boars (Briedermann 2009) could make 

them more attractive to ticks in accordance with the “exposure” hypothesis (see Sec-

tion 4.2.1.6). However, none of the aforementioned differences between the groups 

reached a significant level. Additionally, no significant deviations between male and 

female boar were observed. In contrast to my findings on roe deer, tick burden on 

wild boar might not be sex-biased. The results for the host parameters above are in 

line with the correlation coefficients where body mass, which is usually related to 
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host age, and 𝐺𝐷𝑀𝐼𝑠 were not significantly correlated with the tick intensities (Sec-

tion 4.1.3). 

4.2.3 Comparison of wild boar and roe deer  

Wild boar are rapidly increasing in abundance in Central Europe (Keuling et al. 

2008b, 2013, Léger et al. 2013), particularly in Germany (Schwarz et al. 2009, 

Deutscher Jagdverband 2014c), and they are considered to play an essential role in 

determining overall tick abundances, as well as in the transmission of tick-borne 

diseases (Léger et al. 2013, Pfäffle et al. 2013). However, the intensity and the prev-

alence of the tick burden on roe deer and wild boar were significantly different for 

all life history stages (all Mann-Whitney U-tests: P < 0.001). This observation 

matches that described by Skotarczak and Adamska (2008), where the differences 

in infestation levels between roe deer and wild boars were also significant. The 

study of Pacilly et al. (2014) also reported a lower tick infestation of wild boar in 

comparison to other large grazers.  

In summary, my results clearly confirm that wild boar do not constitute an im-

portant food source for ticks in the Bienwald. Although, they could serve as propa-

gating hosts for I. ricinus (Ostfeld et al. 2006, Ruiz-Fons et al. 2006), the low infesta-

tion intensities with many dead ticks suggest the contrary. Roe deer are clearly the 

dominant host for adult female ticks. 

4.2.4 Attachment sites 

For the order of niche breath on roe deer, I found female ticks showing the lowest 

attachment site specialization, differing significantly from those of the other 3 life 

history stages, whereas nymphs were most specialized in their feeding behavior. 

This observation confirms the findings made by Kiffner et al. (2011a). Moreover, 

both studies demonstrate that niche breadths vary considerable over month and 

year with wider niche breadth during the warmer months. 
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The results of my attachment site analysis for roe deer showed that adult ticks pre-

ferred the abdomen, while immatures were predominantly found at the ears (Sec-

tion 4.1.7). These observations are in sharp contrast to Kiffner et al. (2011) who 

found that female and male ticks reached their highest densities on the neck and 

head (including ears), except during winter when they preferred the front legs. For 

immature ticks Kiffner et al. (2011a) reported the front legs and the head (including 

the ears) as clearly preferred attachment sites. In contrast to Kiffner’s study, the legs 

never reached a top rank for any of the tick life history stages in my study. In addi-

tion, the abdomen and sternum seemed to play a less important role than in my 

study. However, similar to the findings of Kiffner et al. (2011a), the legs in the cur-

rent study showed an increased tick density during the winter months (Nov/Dec). 

Also in contrast to my ranking, with the highest proportions of nymphs and larvae 

on the ears, is a study from Italy which showed the forelegs of roe deer, screened in 

September, to be occupied by larvae which made up 90% of all ticks (Carpi et al. 

2008). Nevertheless, Carpi et al. (2008) did not sample other parts of the roe deer 

body, so that a further comparison was not possible.  

Handeland et al. (2013) reported high tick burdens from the ears of roe deer in Nor-

way. Their results show that nymphs occurred most frequently on the ear, followed 

by larvae and adults. Other parts of the roe deer body were not screened by 

Handeland et al. (2013). Thus, it is unclear if the composition of the tick population 

on the ears is representative for the entire body, and the attachment site preferences 

on these animals is unknown. In this context, my model of the composition of the 

tick population on roe deer shows that a single sampling of the ears can lead to a 

biased estimate of the overall tick burden (see Section 4.1.6) (cf. Mysterud et al. 

2014). 

The dominance of nymphs and larvae on the ears of Norwegian roe deer (Handeland 

et al. 2013) in combination with my results indicates that the ears are a preferred 

attachment site for immature ticks. The observation that adults prefer the anterior 
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and posterior axillae, while immature ixodid ticks select the head and particularly 

the ears, is in line with the findings on red deer (Pacilly et al. 2014), white-tailed 

deer (Bloemer et al. 1988, Schmidtmann et al. 1998), angora goats (Fourie et al. 

1991) and impala (Aepyceros melampus) (Matthee et al. 1997). Thereby, the impala 

study found that one third of the total ixodid tick burden was located on the ears. 

This finding is almost equal to proportions found here. Approximately the same dis-

tribution were detected by Mysterud et al. (2014) on roe deer in Norway, but with 

more larvae on the legs (40.9%), nymphs on the ears (83.7%) and adults in the groin 

(89.2%) and on the neck (94.9%).  

One possible explanation for this attachment behavior can be found in the differ-

ences in mobility between the tick life history stages. On larger animals, questing 

ticks will usually move onto the host over the body parts that contact the vegetation. 

Consequently, ticks climbing onto the host are likely to be predominantly found on 

the head and ears during grazing on the vegetation, as well as on the legs. After en-

countering a host, the immature life stages of I. ricinus travel only a short distance 

and begin to feed mainly on the ears and the legs, whereas male and female ticks 

travel a greater distance on the host surface to reach the sternum and the abdomen 

(cf. Mysterud et al. 2014). In particular, for female ticks the arrival at a body region 

where they can take larger blood meals but is protected from abrasion is vitally im-

portant for egg production and survival (Sonenshine and Roe 2013b). In comparison 

to this, nymphs and larvae have less energy resources that they can spent on move-

ments and require only smaller blood meals (Oliver 1989). 

The height of the vegetation in relation to the size of the host is likely to play an 

important role for the successful attachment of questing ticks (Mejlon and Jaenson 

1997). Additionally, as climatic factors have an influence on the questing height of I. 

ricinus, these might also have an effect on the location at which ticks contact the host 

(Randolph and Storey 1999). The interacting effects of vegetation and climate might 

provide additional information on the attachment site selection of ticks on roe deer, 

but this has so far not been studied. Although my study and that of Kiffner et al. 
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(2011a) were both conducted in forest areas, the aforementioned interactions in re-

lation to the types of prevailing undergrowth could be used to explain the deviations 

in the results of both analyses. For this reason, future studies of tick attachment sites 

on roe deer would also benefit from an additional classification scheme for the roe 

deer body regions using the height above the ground to define different categories, 

similar to Ogden et al. (1998).  

On wild boar, the life history stages found preferred the abdomen and the sternum 

over the ears, except during spring when ticks occurred aggregated on the ears (Sec-

tion 4.1.7). No ticks were found at the head, neck, front legs and hind legs, or on the 

main body of these hosts. Furthermore, males and nymphs were not collected from 

the sternum. In comparison to roe deer, a clear trend indicating that nymphs se-

lected the ears over the abdomen could not be determined for wild boar. Until re-

cently, the only other study on this host (Pacilly et al. 2014) also described adults 

mostly attached to the sternum and abdomen, while nymphs were found predomi-

nantly at the ear, whereas larvae were not collected. Despite some seasonal devia-

tions, the attachment sites registered by Pacilly et al. (2014) are similar to my study. 

Both studies also show that no nymphs or male ticks were attached to the host’s 

body, but were loose and unengorged. A certain number of ticks collected by Pacilly 

et al. (2014) had already detached from the host and dropped into water filled trays 

below the carcasses at the time of sample acquisition, such that a recording of at-

tachment sites was not possible for these ticks. However, the site preferences pre-

sented by Pacilly et al. (2014) for wild boar resemble the ones in my study. There-

fore, I can confirm that partially delayed sampling and the tray-based collection of 

ticks did not influence their results with respect to attachment sites. 

My results for roe deer and wild boar show seasonal covariation for male and female 

ticks, such that the two top ranked body parts were similarly attractive for both 

sexes. This behavior is also in line with the fact the mating ticks were predominantly 

recorded on the abdomen and sternum (Section 4.1.7). In spite of some seasonal 

variations in the ranking of the tick densities, these results suggest that ticks actively 
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choose the body part they feed on. This is supported by the observations made with 

respect to the IFDH. For each tick life history stage, the total number of individuals 

found on the entire host correlated positively at a highly significant level with the 

percentage of ticks attached to the top ranked body part. This behavior stands in 

clear contradiction to the IFDH, which states that a higher tick life history stage 

abundance would increase the proportion of ticks at less preferred attachment sites 

(Kiffner et al. 2011a).  

In summary, the above findings support the hypothesis of pheromone-based on-

host aggregation of I. ricinus, which leads to a mutual attraction of conspecifics on a 

host (Oliver 1989, Grenacher et al. 2001, Sonenshine 2006, Healy and Bourke 2008, 

Sonenshine and Roe 2013b). On wild boar, such observations were not possible due 

to the limited number of ticks found. However, for the two boars on which more than 

5 ticks were found, the infestations were completely aggregated at a single spot 

(once on the ear and once on the abdomen). This could be a first indicator that pher-

omones could lead to on-host aggregation on wild boar. Nevertheless, for roe deer 

and wild boar a multitude of other factors can be considered to influence the spatial 

aggregation of ticks on the hosts. These factors encompass features of fur and skin 

as a barrier for unfed I. ricinus ticks in combination with the amount of blood circu-

lation at different attachment sites (cf. Ogden et al. 1998, Kiffner et al. 2011a). The 

collection of additional information on these interactions should be considered in 

future studies. 

4.2.5 Co-feeding 

The study on roe deer by Kiffner et al. (2011a) suggests that gregarious feeding 

might be beneficial for I. ricinus ticks causing an increased blood feeding rate and 

faster repletion. This statement is supported by my findings on roe deer, which show 

that interstadial attraction (low niche and active feeding site selection) occurred for 

all feeding life history stages (i.e. females, nymphs and larvae). The high niche over-

laps between females, nymphs and larvae underline the gregariousness of I. ricinus 

(Section 4.1.7 to 4.1.9). In addition to the densities and niche indices calculated, 
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highly clumped occurrences of nymphs and larvae on the ears and abdomen were 

found during the sample acquisition. Very closely aggregated (< 1 cm) ticks on roe 

deer have been reported by other authors (Carpi et al. 2008, Vor et al. 2010, 

Handeland et al. 2013). The on-host aggregation of the feeding ticks might support 

non-systemic pathogen transmission between the feeding life history stages 

through co-feeding (Randolph et al. 1996), which is considered as an important fac-

tor in the epidemiology of tick-borne diseases (Randolph 2009).  

Intra- and interstadial aggregation also seems be coupled with seasonal tick activity, 

induced mainly by climatic variations, such that niche overlap correlated positively 

with warmer months as pointed out by the GLM (see Section 4.1.8). A seasonal syn-

chronicity with respect to co-feeding was reported Kiffner et al. (2011a). Carpi et al. 

(2008) modeled the significant influences of geographic location and autumnal cool-

ing rate on the frequency of co-feeding in I. ricinus. For ticks on forest rodents, the 

presence of co-feeding was positively associated with the spring warming rate 

(Kiffner et al. 2011c). Nevertheless, it is still not clear whether non-systemic patho-

gen transmission on roe deer via co-feeding is possible. Therefore, co-feeding trans-

mission experiments should be conducted (cf. Kiffner et al. 2011a).  

Another recent study (Mysterud et al. 2014) on the feeding sites of I. ricinus on roe 

deer proposed a partial separation of the tick life history stages, which was also ob-

served for some sampling periods in the current study (Section 4.1.9). This might 

limit the amount of co-feeding and the possibility of pathogen transmission. On the 

other hand, the highest spatial niche overlap in the entire study period was observed 

between male and female ticks. This result can be explained by the mating behavior 

of male ticks, which has been mainly observed at the abdomen and sternum. As 

males do not feed, co-feeding is not possible between the sexes. 

Due to the limited sample size, it was not possible to calculate niche indices for wild 

boar. However, the aforementioned on-host aggregation on two boars in combina-



Tick burden - Discussion 

178 

tion with the fact that ticks were only found at 3 of 8 possible attachment sites sug-

gest that clumped feeding on wild boar is possible and can lead to co-feeding. Alt-

hough, wild boar are considered to be important hosts in the ecology and dynamics 

of tick-borne pathogens through vectoring ticks (Juricová and Hubálek 2009), the 

low prevalences and intensities of infection found here make this doubtful for Ger-

many. 



 

 

5  
Pathogen prevalence 

The following chapter will present the pathogens found within the organ samples 

and the ticks collected from roe deer and wild boar. 

5.1 Results 

5.1.1 Pathogens in organ samples 

In total, organ parts from 247 roe deer and 344 wild boar were collected during the 

study period. With respect to Rickettsia and Borrelia infections all samples have 

been processed in the lab. Only a single pool (P1 of sample 90) showed a weak pos-

itive result for Rickettsia spp. during the gltA-PCR on the LightCycler® (see Section 

3.2.6.1) in comparison to the positive control (PC). The positive pool contained skin, 

i.e. the ear, of a male wild boar piglet (Figure 5.1) culled in January 2013. The body 

mass of the animal was 16 kg and the 𝐺𝐷𝑀𝐼𝑠 was -0.38. The latter value indicates 

that the boar’s body mass was distinctly below that of average male piglets and sug-

gests that the individual was in poor condition, whereby no ticks were found on this 

animal at the time of the sample acquisition. However, for the pool testing positively 

on the LightCycler® (P1 of Sample 90) there was no indication of Rickettsia spp. dur-

ing the two subsequent PCRs on the thermocycler (see Section 3.2.6). This under-

lines that the LC-PCR can generate false positives and that additional PCRs are nec-

essary to verify positive results. 
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No other organ samples from wild boar, nor any of the roe deer organs were positive 

for B. burgdorferi s.l. species or Rickettsia spp. In addition to this, 15 wild boar em-

bryos were collected (see Figure 5.2). The fetuses had a crown-rump length ranging 

from 9.5 to 18.3 cm and a body mass between 45 and 350 g. They were dissected, 

their organs were pooled equivalently to all other samples and investigated by gltA-

Figure 5.1: Detection of Rickettsia spp. in organs of wild boar by real-time gltA-PCR using 
the LightCycler® with 30 samples (left) with negative control (NC, i.e. NK) and positive con-
trol (PC, i.e. PK). The graph (right) plots the number of cycles against the fluorescence 
(F1/F2). Both positive samples are labeled accordingly: PK and a single positive pool of a 
wild boar. 

Sample 90, Pool 1 (P1) 
male wild boar piglet 

Positive control (PC) 

Figure 5.2: Wild boar fetus with the first hair over the eyes and still closed eyelids (right). 



 Pathogen prevalence - Results 

 181 

PCR for Rickettsia and Borrelia infections on the LightCycler®. None of the embryo 

organ pools tested positively. 

5.1.2 Pathogens in ticks from roe deer 

For the determination of Rickettsia and Borrelia infections, 256 ticks (16.7%, 47 

males and 217 females) from 41 roe deer and 12 adult female ticks (26.1%) from 8 

wild boar were analyzed. 

5.1.2.1 Rickettsia species 

The mean prevalence of Rickettsia from all analyzed ticks from roe deer was 47.0% 

(see Table 5.1), whereby male ticks showed slightly more infections (54.2%) than 

females (45.4%). However, none of the male ticks were attached on roe deer. In ad-

dition, Rickettsia were almost equally prevalent in ticks from fawns (47.4%), year-

lings (46.2%) and adult deer (47.7%). For ticks from female deer, the Rickettsia 

prevalence (53.6%) was distinctly higher than for those from male deer (42.2%). 

However, Fisher’s exact test revealed that the differences between the two groups 

approached the level of significance, but did not quite achieve it (P = 0.080). With 

respect to the ticks’ state of engorgement the following prevalences of Rickettsia 

were observed: loose and unengorged (68.3%), attached and unengorged (46.0%), 

little engorged (36.7%), medium engorged (34.6%) and fully engorged (29.0%). The 

chi-squared analysis showed a high significance (χ24 = 24.24, P < 0.001) with respect 

Table 5.1: Total number of ticks analyzed for Rickettsia and Borrelia infections along with 
the resulting counts of positives and the corresponding prevalences. 

Host species / tick sex 
Analyzed  

ticks 
Unfed  
ticks 

Positive ticks 

Rickettsia spp. Borrelia spp.b Coinfectionb,c 

Ticks from roe deer 264 132 50.0% 124 47.0% 9 3.4% 4 1.5% 

male ticks 48 48 100% 26 54.2% 3 6.3% 2 4.2% 

female ticks 216 84 38.8% 98 45.4% 6 2.8% 2 0.9% 

Ticks from wild boara 12 6 50.0% 5 41.7% 0 0.0% 0 0.0% 

a all ticks were female, b all ticks were unfed, c concurrent infections with Borrelia and Rickettsia spp. 
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to the engorgement states, with a decrease of the Rickettsia prevalence with increas-

ing engorgement (Table 5.2). 

The most frequent Rickettsia infections were recorded for ticks from the hind legs 

(60.0%), followed by the sternum (49.3%) and abdomen (46.0%), while the lowest 

occurrence was detected for the ears (38.1%). When looking at the seasonal changes 

in Rickettsia prevalence, the highest values were registered in Sep/Oct when all an-

alyzed ticks had Rickettsia (100.0%), whereas during all other period the preva-

lences were lower: Jan/Feb (29.4%), Mar/Apr (45.0%), May/Jun (41.7%) and 

Nov/Dec (60.7%). In Jul/Aug no ticks were analyzed. There was a highly significant 

difference between the seasons (χ24 = 17.22, P = 0.002) with a subsequent post-hoc 

test using pairwise comparisons with Bonferroni corrections of the P-values reveal-

ing that the periods Jan/Feb and May/Jun had a significantly lower (P < 0.05) Rick-

ettsia prevalence than Sep/Oct. (Table 5.3). 

Table 5.2: Number of ticks per state of engorgement in relation to the ticks tested positively 
for Rickettsia spp. and B. burgdorferi s.l. species together with the corresponding preva-
lences. 

 Ticks Rickettsia spp. Borrelia spp. Coinfectionsa 

Ticks from roe deer 264 124 47.0% 9 13.4% 4 1.5% 

loose, unengorged 82 56 68.3% 9 11.0% 4 4.9% 

attached, unengorged 50 23 46.0% 0 10.0% 0 0.0% 

attached, little engorged 49 18 36.7% 0 10.0% 0 0.0% 

attached, medium engorged 52 18 34.6% 0 10.0% 0 0.0% 

attached, fully engorged 31 9 29.0% 0 10.0% 0 0.0% 

Ticks from wild boar 12 5 41.7% 0 10.0% 0 0.0% 

attached, unengorged 6 4 66.7% 0 10.0% 0 0.0% 

attached, medium engorged 6 1 16.7% 0 10.0% 0 0.0% 
a concurrent infections with Borrelia and Rickettsia spp. 
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5.1.2.2 B. burgdorferi s.l. species 

In contrast to Rickettsia, the overall B. burgdorferi s.l. prevalence was distinctly 

lower in ticks from roe deer at 3.4%. B. burgdorferi s.l. were detected more fre-

quently in male ticks (6.3%) than in females ones (2.8%) (Table 5.1). Furthermore, 

ticks from male deer had a lower prevalence of Borrelia (2.6%) than those from fe-

male deer (4.6%), whereby the pathogen was more prevalent in ticks from yearlings 

(5.1%) than in those from fawns (2.6%) and adult roe deer (1.8%).  

A highly significant difference (χ24 = 20.68, P < 0.001) was determined between the 

engorgement states of the ticks: unengorged ticks had a Borrelia prevalence of 

11.0%, whereas fed ticks were never infected (0.0%) independent of their level of 

engorgement. When considering only unfed ticks 17.6% of the females and 6.3% of 

the males were infected. Fisher’s exact test showed that this difference was not sig-

nificant (P = 0.103). In addition to this, no significant deviations between the body 

parts (ears: 4.8%, sternum: 4.2%, hind legs: 4.0%, abdomen: 2.4%) and the sampling 

seasons (Jan/Feb: 0.0%, Mar/Apr: 5.0%, May/Jun: 3.7%, Sep/Oct: 0.0%, Nov/Dec: 

3.6%) were observed (Table 5.3). 

Table 5.3: Number of ticks from roe deer and wild boar for each sampling period in rela-
tion to the number of infected individuals and their prevalences of Rickettsia spp. and 
B. burgdorferi s.l. 

 Ticks Rickettsia spp. Borrelia spp. Coinfectionsa 

Ticks from roe deer 264 124 147.0% 9 3.4% 4 1.5% 

    Jan/Feb 17 5 129.4% 0 0.0% 0 0.0% 

    Mar/Apr 20 9 145.0% 1 5.0% 1 5.0% 

    May/Jun 163 68 141.7% 6 3.6% 1 0.6% 

    Sep/Oct 8 8 100.0% 0 0.0% 0 0.0% 

    Nov/Dec 56 34 160.7% 2 3.6% 2 3.6% 

Ticks from wild boar 12 5 141.7% 0 0.0% 0 0.0% 

    Nov/Dec 12 5 141.7% 0 0.0% 0 0.0% 
a concurrent infections with Borrelia and Rickettsia spp. 
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5.1.2.3 Coinfections 

The prevalence of concurrent infections of ticks from roe deer with Rickettsia and 

Borrelia was low (1.5%), whereby coinfections were only registered for loose unen-

gorged ticks (4.9%). The deviation between attached and loose ticks approached 

significance with χ24 = 9.0, df = 4, P = 0.06. In addition to this, male ticks had more 

coinfections (4.2%) than female ticks (0.9%), although Fisher’s exact test showed 

with that this difference was not significant (P = 0.15). Moreover, ticks from fawns 

were more frequently infected (2.6%) than those from adults (1.8%) and yearlings 

(0.9%). In accordance with the individual observations made for Rickettsia and Bor-

relia, male deer had less ticks with concurrent infections (0.7%) than female deer 

(2.7%), although significance has not been verified by Fisher’s exact test (P = 0.31). 

With respect to the body parts, coinfections occurred in the following order: hind 

legs (4.0%), abdomen (1.6%) and sternum (1.4%). Moreover, for the sampling peri-

ods the following distribution of coinfections was found: Jan/Feb (0.0%), Mar/Apr 

(5.0%), May/Jun (0.6%), Sep/Oct (0.0%) and Nov/Dec (3.6%). In addition, there 

was no evidence found that Borrelia infections were significantly related to Rickett-

sia infections (Fisher’s exact test: P = 1.0). 

5.1.3 Pathogens in ticks from wild boar 

5.1.3.1 Rickettsia species 

The adult female ticks from wild boar had a Rickettsia prevalence of 41.7%, whereby 

no tick from female wild boar had Rickettsia (0.0%) and those from male boar 

showed a prevalence of 50.0%. With respect to the age of the wild boar, Rickettsia 

was most prevalent in ticks from piglets (44.4%), followed by those from adults and 

young wild boar (both 33.3%). Attached, unengorged ticks had a slightly higher 

prevalence (66.7%) than attached and medium engorged ones (16.7%). Although 

this difference was not significant by Fisher’s exact test (P = 0.242), the decreasing 

Rickettsia prevalence with a higher state of engorgement could suggest a behavior 

similar to that of ticks from roe deer. Furthermore, Rickettsia were more frequent in 

ticks from the sternum (66.7%) than in those from ears and abdomen (both 33.3%). 
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The detection of prevalence changes with respect the sampling periods was not pos-

sible, since all analyzed ticks from wild boar were collected during November and 

December (compare with Table 5.3). 

5.1.3.2 B. burgdorferi s.l. species 

In contrast to Rickettsia, and contrary to the observations made for roe deer, neither 

fed nor unfed ticks from wild boar tested positive for B. burgdorferi s.l. For this rea-

son, further descriptive and explorative statistical evaluation of B. burgdorferi s.l. in 

ticks from wild boar is omitted. 

5.1.4 Rickettsia spp. sequencing 

The ompB-PCR showed 24 positives out of 83 randomly selected samples (all from 

roe deer, see Section 3.2.6.4), whereby the sequencing determined R. helvetica in 9 

ticks (Table 5.4). R. helvetica was the only species detected. From the ticks identified 

as having R. helvetica, 8 were adult females and 1 was a male, 8 were from roe deer 

yearlings and 1 was from an adult deer, 3 ticks were from male hosts and 6 were 

from a single female deer. All ticks with R. helvetica were found on the abdomen or 

the sternum. The hosts of the ticks having R. helvetica carried more than 20 ticks, 

expect for one male yearling with only 6 I. ricinus. Ticks infected with R. helvetica 

were attached and medium to fully engorged, except for a single female I. ricinus that 

was loose and unengorged. The eluates of 15 positively tested ticks could not be se-

quenced up to the species level. 
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5.1.5 Host-tick-pathogen relationships 

The following analyses will be restricted to exploring the interaction between ticks, 

roe deer and Rickettsia because of the limited tick sample size (n = 12) for wild boar 

and the few samples tested positively for Borrelia in relation to both host species. 

Table 5.4: Tick samples positively tested for Rickettsia spp. with results of the DNA-se-
quencing in relation to B. burgdorferi s.l. infections (Borr.), host animal and tick parameters. 

Host 
 

Tick 
 

Borr. 
 

Rickettsia 
 

Species Age Sex 
No. 

Ticks 
Life 

Stage 
Attach. 

Site 
State of 
Engorg. 

ospA gltA ompB Seq. 

roe deer A m 41 f abd 4 - + (+) NS 

roe deer A m 24 f abd 3 - + + R. helvetica 

roe deer Y m 22 f abd 1 - + + NE 

roe deer A m 14 f ste 1 - + + NE 

roe deer Y m 15 f abd 2 - + (+) NE 

roe deer Y m 54 f ste 3 - + (+) NS 

roe deer Y M 6 f abd 4 - + + R. helvetica 

roe deer Y F 5 f ste 0 - + + NE 

roe deer Y M 54 m abd 0 - + + R. helvetica 
    m abd 0 - + + NE 

roe deer Y F 27 f ste 3 - + + NE 
    f ear 3 - + (+) NS 

roe deer Y F 22 f abd 3 - + (+) NS 

    f abd 3 - + + NE 
    f abd 0 - + (+) NS 

    f abd 0 - + + NE 

roe deer y F 30 f abd 3 - + + R. helvetica 
    f abd 3 - + + R. helvetica 

    f abd 3 - + (+) NS 
    f abd 0 - (+) + NS 
    f abd 3 - + + R. helvetica 

    f abd 0 - + + R. helvetica 
    f ste 4 - + + R. helvetica 

    f ste 4 - + + R. helvetica 

a = adult; y = yearling; f = female; m = male; abd = abdomen; ste = sternum; ear = ears; + = positive; 
(+) = slightly positive; - = negative; NS = not sequenceable; NE = not evaluable 
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5.1.5.1 Correlation analysis 

The correlation coefficients in Table 5.5 were calculated to investigate the occur-

rence of Rickettsia with respect to tick and roe deer parameters. Infections with 

Rickettsia were significantly negatively correlated with the tick density at the attach-

ment site and had a highly significant negative linear relationship with tick engorge-

ment. Consequently, a higher state of engorgement leads to a lower prevalence of 

Rickettsia. The state of engorgement depends significantly on the total number of 

ticks and on the relative tick density at the preferred attachment site in a negative 

way. In contrast to this, the effect of host body mass on the state of engorgement is 

significantly positive but an order of magnitude smaller than the influences of the 

tick burden. 

5.1.5.2 Factor interdependency analysis 

A subsequent factor analysis of the parameters revealed the interdependencies be-

tween roe deer, tick and pathogen parameters (Table 5.6). The first extracted factor 

represents 24.1% of the variance of the studied dataset and can be interpreted as 

the state of engorgement. Moreover, the positive loading of tick sex on the first factor 

underlines that only female ticks engorge (sex = 2), while male ticks (sex =1) were 

all loose and unengorged. The composition of the second component reveals that it 

has almost no effect on the Rickettsia prevalence and on the state of engorgement. 

This component reflects 19.9% of the dataset variance and demonstrates that a 

higher tick burden can be expected on male roe deer with increasing age and de-

creasing 𝐺𝐷𝑀𝐼𝑠. Similar to the second component, the third and the fourth factors 

Table 5.5: Pearson’s correlation coefficients in relation to Rickettsia infections, level of en-
gorgement, number of ticks found on the entire host body (roe deer), tick density at the 
preferred attachment site, host body mass and mass index. 

 Rickettsia Tick count Tick density Body mass GDMIs 

Rickettsia -1.000** -0.093** -0.145** 0.091* 0.083* 

Engorgement -0.282** -0.164** -0.175** 0.067* 0.056* 

Significances: * P < 0.05; ** P < 0.01 
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show no large influence on the level of engorgement and on the number of infec-

tions. The third component represents older animals with higher body mass and 

𝐺𝐷𝑀𝐼𝑠 that have an increased numbers of ticks, while the fourth factor can be inter-

preted as “healthier” male roe deer. The latter factor is mainly identified by the high 

loading of the 𝐺𝐷𝑀𝐼𝑠, which leads in combination with a higher body mass and de-

creasing age to a lower relative tick density at the preferred feeding sites. 

Together with the first two components, the third and the fourth factor accumulate 

to reflect more than 70% of the variance in the studied data. Finally, the fifth ex-

tracted factor shows clearly that a lower states of engorgement leads to a higher 

Rickettsia prevalence, whereby this behavior stands in minor relation to the total 

number of ticks on the host, the host age and the host body mass. In this context, 

infections are more likely on male deer and are influenced negatively by the total 

number of ticks and positively by the body mass. In summary, the 5 factors repre-

sent 82.0% of dataset variance, while the analysis demonstrates that the ticks’ state 

of engorgement, together with the sex of the ticks, are the most important parame-

ters that influence the Rickettsia prevalence in ticks from roe deer. Furthermore, the 

Table 5.6: Rotated component matrix generated using optimal scaling followed by factor 
analysis with respect to Rickettsia spp. infections in relation to tick and roe deer host pa-
rameters. 

Variables  Component 

(quantified by CATPCA) 1 2 3 4 5 

Rickettsia -0.118 -0.070 0.039 0.040 0.965 

Engorgement 0.893 0.022 -0.024 0.073 -0.243 

Tick sexa 0.939 0.022 0.022 -0.013 0.073 

Tick count 0.007 0.723 0.416 0.062 -0.101 

Tick density 0.069 0.806 0.022 -0.291 0.038 

Host sexa 0.051 -0.662 0.061 -0.570 0.146 

Host ageb -0.009 0.196 0.902 -0.102 -0.074 

Host body mass 0.009 0.006 0.763 0.348 0.173 

Host GDMIs 0.071 -0.136 0.146 0.886 0.074 

% of Variance 24.1 19.9 16.5 12.1 9.5 

Cumulative% 24.1 43.9 60.4 72.5 82.0 
a sex encoding: male = 1, female = 2; b age encoding: fawn = 1, yearling = 2, adult = 3 
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factor analysis has determined that tick burden (component 2), as well as host age 

and physical conditions (component 3 and 4), have only minor influences on the oc-

currence of Rickettsia infections. 

5.1.5.3 Ranking of influences 

The observations made above were confirmed by the decision tree analysis pre-

sented in Figure 5.3. Tick engorgement has been determined as the most important 

parameter splitting the initial dataset with respect to Rickettsia infections. The prev-

alence of Rickettsia in loose ticks is almost 30% higher than in attached ticks. On the 

next level of the tree, loose, unengorged ticks are divided by sex, revealing that fe-

males are significantly more likely to be infected than males. Furthermore, loose 

male ticks had considerably more Rickettsia infections from July to December than 

during the months January to June. For the first half of the year, the sex of roe deer 

is identified by the decision tree as splitting the group of loose, unengorged ticks 

even further, such that female deer carried not a single tick having Rickettsia, while 

for male roe deer the tick infection prevalence was at 52.4%. During the second half 

of the year the CHAID algorithm uses the 𝐺𝐷𝑀𝐼𝑠 of the hosts to split loose male ticks 

into two groups. Males from roe deer with a 𝐺𝐷𝑀𝐼𝑠 ≤ 0.163 had a Rickettsia preva-

lence of 100%, while those ticks from animals with a higher index had no Rickettsia 

at all. Similar to the correlation analysis and the factor extraction performed above, 

the decision tree determined the state of engorgement and physical condition of the 

hosts as important aspects for Rickettsia occurrence. Nevertheless, additional pa-

rameters, i.e. tick sex, sampling period and host sex, were incorporated to identify 

and rank significantly differing groups within the dataset. 

5.1.5.4 Logistic regression model 

The resulting model, estimated by the logistic regression, underlines the signifi-

cance of the previously made observations, underlines their significance and reveals 

more details on how the parameters interact with the Rickettsia infection rate. The 

regression coefficients are displayed in Table 5.7 and have been validated on the 
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original dataset, showing that the model was able to classify 66.3% of the cases cor-

rectly. For an increase in the host body mass the model predicts a significant rise in 

the number of the Rickettsia infections. There is a significant decrease in Rickettsia 

Figure 5.3: Decision tree identifying the most important parameters hat influence Rickettsia 
prevalence of ticks from roe deer. 
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infections with increasing levels of engorgement determined in relation to the ref-

erence state, i.e. loose and unengorged.  

Moreover, the model demonstrates that the chance of a Rickettsia infection for ticks 

is significantly higher by a factor of 6.2 in Nov/Dec than during the reference period 

Jan/Feb. The extreme coefficient and the significance near 1 for the period Sep/Oct 

is caused by the fact the Rickettsia prevalence during these months was 100.0%. Fi-

nally, the logistic regression verified that ticks from yearlings have a significantly 

higher chance of being infected by Rickettsia than those from adult roe deer. Alt-

hough the coefficient for fawns has not been determined as significant, its magni-

tude suggests that animals younger than 1 year could carry more infected ticks than 

adult hosts. 

  

Table 5.7: Model coefficients and significances resulting from the logistic regression with 
respect to Rickettsia infections in ticks from roe deer. 

 Exp(B) Sig.   Exp(B) Sig. 

(Intercept) 0.001 0.007  Jan/Feb (Ref.)  0.010 

Body mass 1.563 0.004  Mar/Apr 2.265 0.294 

Loose unengorged (Ref.)  0.000  May/Jun 0.705 0.607 

Attached unengorged 0.467 0.053  Sep/Oct 2.8·109 0.999 

Attached little engorged 0.251 0.002  Nov/Dec 6.198 0.013 

Attached medium engorged 0.231 0.000  Fawn 1.681 0.535 

Attached fully engorged 0.223 0.002  Yearling 6.398 0.001 

    Adult (Ref.)  0.003 
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5.2 Discussion 

5.2.1 B. burgdorferi s.l. infections 

5.2.1.1 Roe deer 

In the present study, no B. burgdorferi s.l. species were detected in any of the organ 

samples collected from roe deer, although B. burgdorferi s.l. was found in ticks col-

lected from hedgehogs in the Bienwald (Skuballa 2011). A reservoir competence to 

B. burgdorferi has been shown for several small mammalian, bird and lizard species 

(Ostfeld et al. 2006, Gern 2008, Skuballa et al. 2012). Conversely, my findings con-

firm that roe deer have a reservoir incompetence for B. burgdorferi s.l. (Telford et al. 

1988, Gill et al. 1993, Tälleklint and Jaenson 1997), such that none of the individuals 

was infected although they were infested by numerous I. ricinus ticks (Matuschka et 

al. 1993). Although Skotarczak and Adamska, (2008) report the presence of B. ga-

rinii in 2 out of 238 roe deer in western Poland, they assume that roe deer are not 

important in the transmission cycle of B. burgdorferi s.l. 

Kurtenbach et al. (1998) demonstrated that the complement system of deer is in-

volved in killing three human pathogenic strains of B. burgdorferi s.l. (i.e. B. burgdor-

feri s.s., B. garinii and B. afzelii). An analysis of 12 Borrelia species showed that the 

borreliacidal activity of roe deer, red deer and fallow deer (Dama dama) sera was 

also observed regardless of the genospecies (Bhide et al. 2005). Complement-medi-

ated killing of B. burgdorferi s.l. was also observed by Nelson et al . (2000) for sika 

deer (Cervus nippon yesoensis) in the presence or absence of antibodies (Isogai et al. 

1991). However, for sika deer local infections of skin parts with co-feeding infected 

ticks have been found, although no generalized infection in the deer was present 

(Kimura et al. 1995). Consequently, the transmission of B. burgdorferi s.l. between 

ticks through co-feeding on locally infected skin might also be possible for unin-

fected roe deer, although they are known to be reservoir-incompetent. 

The average B. burgdorferi s.l. infection rate of I. ricinus ticks (including engorged 

and unengorged ticks) from roe deer was 3.4% (Section 5.1.2.2). A distinctly lower 
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infection prevalence in ticks from roe deer was detected in a study from Norway 

(Kjelland et al. 2011) ranging from 0% for larval and adult ticks up to 2.9% for 

nymphs. In contrast, Rijpkema et al. (1996) reported considerably higher infection 

rates for I. ricinus from roe deer of up to 26% in three Dutch provinces. On red deer 

in the Netherlands the infection rate of unengorged male I. ricinus was 4.5% (Pacilly 

et al. 2014). In the United States (Maine), Lacombe et al. (1993) found that 13% of 

adult Ixodes dammini from white-tailed deer were infected with females having a 

higher prevalence of B. burgdorferi s.l. than males. This observation is in contrast to 

my findings with a higher prevalence of B. burgdorferi s.l. in male ticks (6.3%) than 

in female ticks (2.8%), although this difference was not significant (Section 5.1.2.2). 

A male tick-biased infection prevalence is also supported by the study of (Rijpkema 

et al. 1997). However, the B. burgdorferi s.l. prevalences found in the other studies 

differ from those I determined in the Bienwald. The high variation of the infection 

rates is an indicator to a multitude of factors influencing ticks, hosts and pathogen 

transmission (Kirstein et al. 1997, Halos et al. 2010). 

In the present study, the state of engorgement was significantly related to the likeli-

hood of a Borrelia infection, such that none of the fed females were infected by B. 

burgdorferi s.l. species and unfed ticks had an infection rate of 11.0% (unfed females: 

17.7%). This observation underlines the findings of other studies that showed that 

the prevalence of B. burgdorferi s.l. in questing ticks from the vegetation or in unfed 

ones collected from wild cervids is significantly higher than in engorged individuals, 

such that only few ticks retain Borrelia spirochetes after feeding (Lacombe et al. 

1993, Matuschka et al. 1993, Gray et al. 1999, Skotarczak and Adamska 2008, Rosef 

et al. 2009, Kjelland et al. 2011, Pacilly et al. 2014). The reason for this behavior is 

that the borreliacidal effect of deer sera is not only active in the host itself, but also 

in the ticks thorough the ingestion of host blood (Lacombe et al. 1993, Kurtenbach 

et al. 1998b). B. burgdorferi s.l. spirochetes that are sensitive to destruction by the 

alternative pathway of the complement system are lysed in the midgut of the feeding 

tick, although spirochetes in the salivary glands prior to the uptake of blood may be 

injected into the host and escape from killing (Kurtenbach et al. 2002, 2006). As a 
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consequence, increasing population densities of deer, which are the preferred hosts 

of adult female I. ricinus, led to a reduction in the number of infected ticks (Gray et 

al. 1999, Rosef et al. 2009, Brunnemann 2010). Thus, the apparent relationship be-

tween tick engorgement and the prevalence B. burgdorferi s.l. in the present study 

underlines the reservoir incompetence of roe deer (cf. Skotarczak and Adamska 

2008, Kjelland et al. 2011). 

This diluting effect can also decrease the infection rate in future tick generations, 

since it reduces the number of infected females and thus inhibits the transovarial 

transmission of B. burgdorferi s.l. spirochetes from adults to larvae of the I. ricinus 

complex (Magnarelli et al. 1987). The fact that a large proportion of ticks feeding on 

roe deer are adult females using deer as their main blood source for egg-production 

(Wilson et al. 1984, Tälleklint and Jaenson 1997, Pichon et al. 1999, Skotarczak and 

Adamska 2008, Kiffner et al. 2010a) might intensify the transovarial dilution even 

further, although only about 14% of infected females transfer the infection to their 

eggs (Bellet-Edimo et al. 2005). In addition, the borreliacidal effect of deer serum on 

feeding I. ricinus could reduce the number of infected small rodents and thus limit 

zoonotic transmission in the ecosystem, such that the timing of rodent-tick-deer in-

teractions becomes a critical factor for the transmission of B. burgdorferi s.l. (cf. 

Pacilly et al. 2014). Current investigations in the Bienwald show that rodent popu-

lation densities are at a low level (Schaeffer et al., unpublished data). This might also 

be an additional factor which keeps the Borrelia prevalence in this area at a rela-

tively low level. 

Other factors influencing the Borrelia infection rate could be seasonal changes in tick 

abundance, host age and attachment site. I registered a higher number of infections 

in April and May (both 5%). Other months had distinctly lower prevalences. This 

finding corresponds to the typical spring peak of tick activity (Gray 1991, Randolph 

et al. 2002), which was also found in my study (see Section 4.1.1). Therefore, tick 

abundance might be synchronized with B. burgdorferi s.l. prevalence, as has been 

observed for the tick-borne encephalitis (TBE) virus (Randolph et al. 2000). This in 
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turn could mean that an increased tick density on roe deer with higher chances of 

co-feeding leads to more Borrelia infections in the ticks. Although host age and at-

tachment sites did not influence the infection rates of I. ricinus in general, the highest 

prevalences of B. burgdorferi s.l. spp. occurred in ticks from yearlings and in ticks 

attached to the ears (see Section 5.1.2.2). Over the whole study period, roe deer 

yearlings had the highest infestation intensity with ticks and the ears were one of 

the preferred feedings sites where ticks aggregated (Section 4.2.4). Such aggrega-

tions are a further indicator that co-feeding might increase the B. burgdorferi s.l. in-

fection prevalences in ticks on roe deer (Randolph et al. 1996). 

5.2.1.2 Wild boar 

A study on wild boar blood and spleen tissue in Poland also showed no B. burgdorferi 

s.l. infected wild boar (Skotarczak and Adamska 2008). Domestic pigs, however, 

could support the circulation of B. burgdorferi s.s., (Kurtenbach et al. 1998), although 

they are completely borreliacidal for B. afzelii, B. garinii and B. valaisiana. A reported 

finding of an I. ricinus nymph infected with B. afzelii that had fed as a larva on a wild 

boar in North-Central Spain could indicate a reservoir competence for this genospe-

cies (Estrada-Peña et al. 2005). Serological surveys of wild boar have shown sero-

prevalences to B. burgdorferi s.l. ranging from 19% up to 46.7% (Juricová and 

Hubálek 2009). Thereby, the evidence from IgG antibodies does not allow us to draw 

conclusions about current or past Borrelia infections, but only indicates contact of 

the animals with the agent of Lyme borreliosis.  

Nevertheless, for wild boar my results suggest a reservoir incompetence in relation 

to B. burgdorferi s.l, since none of the organ samples and none of the ticks tested 

positively by PCR (see Section 5.1.3.2). The fact that during my study B. burgdorferi 

s.l. infections were determined in ticks from roe deer, while no infected ticks were 

found on wild boar, strengthens the assumption of a borreliacidal effect of wild boar 

serum and thus of a reservoir-incompetence of wild boar to B. burgdorferi s.l. re-

gardless of the genospecies. Equivalently, no infection was found in adult female 
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ticks collected from wild boar in the Netherlands (Pacilly et al. 2014). To gain a bet-

ter understanding of the complement system of wild boar, studies using a procedure 

similar to that of Bhide et al. (2005) are recommended. 

5.2.2 Rickettsia infections 

5.2.2.1 Roe deer 

Several PCR analyses of roe deer blood and organs did not find any positive Rickett-

sia samples (Skarphédinsson et al. 2005, Smetanová et al. 2006, Stańczak et al. 2009, 

Overzier et al. 2013) (see Table 5.8). These results suggest that wild cervids such as 

roe deer are not compatible hosts for Rickettsia spp. in the sense that they are res-

ervoir incompetent. On the other hand, the study of Stefanidesova et al. (2007) de-

tected a single roe deer in Slovakia the spleen of which tested positive for R. helvet-

ica. In the Netherlands, the prevalence of R. helvetica in roe deer blood determined 

by PCR was 19% (Sprong et al. 2009), while red deer was not infected. In addition, 

R. helvetica was found in the peripheral blood of Sika deer in Japan, which leads to 

the hypothesis that deer may be potential reservoir hosts for this species, increasing 

Table 5.8: Literature review of prevalences of R. helvetica infections in feeding I. ricinus 
ticks, organ and blood samples in relation to roe deer and wild boar. 

   Prevalence  

 Country Period Ticks Organs or Blood Reference 

Roe deer Germany 2010-2012 16.6% 0% (Overzier et al. 2013) 

 Poland 2005 12.5% 0% (Stańczak et al. 2009) 

 Denmark 2002-2003 n.a. 0% (Skarphédinsson et al. 2005) 

 Slovakia 2005-2006 n.a. 3.3 ± 6.5% (Stefanidesova et al. 2007) 

 Netherlands 2000-2002 n.a. 19% (Sprong et al. 2009) 

 Slovakia 2003-2004 n.a. 1 of 2 (Smetanová et al. 2006) 

 Sweden 1996-1997 3 of 4 n.a. (Nilsson et al. 1999) 
      

Wild boar Slovakia 2005-2006 n.a. 0% (Stefanidesova et al. 2007) 

 Netherlands 2000-2002 n.a. 6.9% (Sprong et al. 2009) 

 Spain 2004 0% n.a. (de la Fuente et al. 2004) 
      

R. he. = Rickettsia helvetica; n.a. = not available 
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the geographical dispersion of the bacteria even further and thus playing a more 

significant role in its epidemiology (Sprong et al. 2009) than previously assumed.  

In contrast to this, the organ samples from roe deer in this study all tested negative 

for Rickettsia spp. and thus roe deer in the Bienwald could not be confirmed as com-

petent reservoirs of Rickettsia spp. In accordance with Skarphédinsson et al. (2005), 

one reason for this may be that Rickettsia infections, and particularly R. helvetica 

spirochetes, have a quite focal distribution, such that the bacteria might not occur in 

parts of the Bienwald. However, the high infection rates of the ticks collected within 

the present study and those found in another study (Speck et al. 2013) suggest the 

contrary. Another explanation for the observations made in the Bienwald may be 

that the roe deer analyzed were not rickettsiemic at the time of sampling, as the 

phase of an acute infection might be relatively short (Skarphédinsson et al. 2005, 

Stańczak et al. 2009). This result is in accordance with the absence of any clinical 

signs in roe deer in relation to Rickettsia spp. infections (cf. Sprong et al. 2009). My 

results suggest that roe deer are not a reservoir host for Rickettsia spp. Nevertheless, 

the definitive reason for the negativity of all roe deer organ samples with respect to 

Rickettsia spp. remains unclear. 

The only Rickettsia species isolated from I. ricinus ticks in this study was R. helvetica, 

which has also been found in ticks in several European countries (Stefanidesova et 

al. 2007, Sprong et al. 2009). A Swedish study found 3 of 4 I. ricinus individuals col-

lected from roe deer to be positive for R. helvetica (Nilsson et al. 1999). The R. hel-

vetica infection rates of female ticks (15.7%) and male ticks (10.3%) from roe deer 

in Poland (Stańczak et al. 2009) were quite similar to those reported in a study from 

southern Germany (females: 18.4%, males: 13.6%) (Overzier et al. 2013). Both stud-

ies point out that the Rickettsia infection rate in female ticks was higher than in 

males, while the state of engorgement did not significantly influence rickettsial oc-

currence, similar to Dautel et al. (2006).  
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These findings are in contrast to my study. In the Bienwald, the mean prevalence of 

Rickettsia spp. with respect to all ticks collected from roe deer was considerably 

higher (47.0%) than found in previous studies. Thereby, male ticks (54.2%) were 

more likely to be infected than females (45.4%). All my analyses revealed that the 

prevalence of Rickettsia spp. was significantly lower in engorged I. ricinus than in 

unfed individuals. The decision tree showed that the state of engorgement was the 

most important factor influencing the Rickettsia infection rate, followed by tick sex. 

Unfed females showed a prevalence of over 80%, while the mean infection rate of 

feeding females reduced to under 40% (Section 5.1.5.3). Moreover, with the logistic 

regression (Section 5.1.5.4) I was able to show that with each higher level of en-

gorgement the chance of an infection was reduced even further. The influence of 

feeding on female ticks seems to be the reason why in the present study the infection 

rate of females was significantly lower than in males. The negative correlation be-

tween feeding and infections might indicate that roe deer are able to kill Rickettsia 

spp. in the feeding ticks, similar to the situation found in B. burgdorferi s.l., although 

the effect does seem to be less intense. As far as is known, this is the first report of 

such a relationship between roe deer, I. ricinus feeding behavior and Rickettsia spp. 

Investigations similar to those of Bhide et al. (2005) and Kurtenbach et al. (1998) 

are highly recommended for Rickettsia spp. in ticks and roe deer. 

One possible explanation for the high infection rates could be related to a rickettsi-

acidal effect of roe deer on feeding ticks, as discussed above. A higher roe deer pop-

ulation density would then lead to a reduction of the Rickettsia prevalence through 

the feeding ticks. Overzier et al. (2013), for example, estimated a roe deer population 

density at 10 animals per 100 ha in their sampling area. In contrast to this, the roe 

deer density in the Bienwald during the sampling period was lower with approxi-

mately 6 individuals per 100 ha (Ehrhart 2012). Consequently, the inverse relation 

between host density and infection rate might be the reason why more Rickettsia 

spp. infections in ticks were observed in the present study than in the investigation 

of Overzier et al. (2013).  
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My correlation analysis (Section 5.1.5.1) and in particular the factor analysis (Sec-

tion 5.1.5.2) revealed that both the number of ticks on the entire roe deer body and 

the tick density at the preferred feeding site were associated with a reduced Rickett-

sia infection rate and with a lower level of engorgement. One explanation for the 

lower level of engorgement with increasing tick burden could be that only a few ticks 

feed rapidly, while a higher proportion feed more slowly. Such an observation was 

also made by Wang et al. (2001) showing that fast-feeding ticks seem to impair the 

blood-feeding success of slow-feeding females during gregarious feeding by causing 

host immune responses. Such a behavior is corroborated by my observation that at 

multiple attachment sites where more than 10 ticks were feeding gregariously only 

a very few ticks (1-3) were fully engorged (data not shown). However, Wang et al. 

(2001) also showed that gregarious feeding also leads to an increased blood feeding 

rate in female ticks. Thus, not all ticks will benefit from feeding aggregation, such 

that some will have to face increased costs (as discussed above).  

In combination with the assumption of a rickettsiacidal effect of roe deer, the higher 

feeding rate could provide an explanation for the negative correlation between tick 

density at the preferred attachment site and Rickettsia spp. infections. As a result, a 

higher tick density leads to an increased blood feeding rate through aggregated 

Figure 5.4: Gregarious feeding of I. ricinus on roe deer might cause three possible effects 
caused by tick abundance (T) onto the level of engorgement (E) and the prevalence of Rick-
ettsia spp. (R) in the ticks. The direction of the effects are in accordance with the up- and 
down-pointing arrows. 
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feeding, which in turn leads to a more rapid increases of the level of engorgement of 

some ticks (the faster feeding ones), such that the proposed rickettsiacidal effect of 

roe deer reduces the Rickettsia infection rate (second row of Figure 5.4). Moreover, 

the increased-blood-feeding hypothesis might be an explanation for why ticks from 

male roe deer have significantly less Rickettsia infections than ticks from female 

hosts (Section 5.1.5), because the tick intensity on male deer was significantly higher 

than on female deer (cf. Chapter 4). On the other hand, the impaired blood-feeding 

hypothesis (Wang et al. 2001) can be applied to explain the significantly higher num-

ber of Rickettsia infections in ticks from roe deer yearlings (Section 5.1.5.4). Since 

yearlings carry a higher number of ticks than adults (Section 4.1.1), the impaired 

blood-feeding success might be the reason for lower levels of engorgement and for 

the increased Rickettsia prevalence (first row of Figure 5.4). The higher infection 

rate might also be related to the transmission of Rickettsia spp. between attached 

ticks through co-feeding (last row of Figure 5.4). The discussion above underlines 

that the interdependencies of the three effects, which are summarized in Figure 5.4, 

have to be considered in the epidemiological cycle of rickettsial diseases with re-

spect on roe deer and their ticks. 

However, another explanation for the high prevalences found in this study cloud be 

that R. helvetica is efficiently vertically transmitted through the next generation by 

transovarial transmission and from one to the next life history stage by transstadial 

transmission. Under laboratory conditions these effects have been demonstrated for 

other Rickettsia spp. by Burgdorfer et al. (1979). In general, pathogens that benefit 

from both transmission modes are less dependent on vertebrate hosts. For this rea-

son, I. ricinus can be considered as a reservoir host for R. helvetica. The high infection 

rates of I. ricinus in combination with the findings of only R. helvetica in these ticks 

underline the hypothesis that I. ricinus is an important reservoir host for R. helvetica 

(Sprong et al. 2009). 

The interactions between the effects discussed above in combination with seasonal 

tick activity could have led to the significant changes in Rickettsia prevalences in 
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relation to the sampling periods shown by the logistic regression analysis (Section 

5.1.5.4). Climatic parameters in relation to tick abundance could have affected the 

Rickettsia prevalence in ticks from roe deer. A correlation between tick burden and 

Rickettsia spp. prevalence has been suggested (Kantsø et al. 2010, Schorn et al. 

2011). The study area of Overzier et al. (2013) was a forest area with an average 

temperature between 6.5 and 7.5 °C and rainfall between 950 and 1000 mm per 

year. A higher average temperature (10 °C) and lower precipitation depths (680 and 

700 mm) were recorded in the Bienwald during the study period. The warmer and 

dryer climate in the Bienwald could constitute a more suitable habitat for I. ricinus 

and thus lead to higher tick prevalences and abundances (Perret et al. 2004, Gray et 

al. 2009, Gilbert 2010). This is underlined by a high tick intensity on small mammals 

in the Bienwald compared to that found in other studies (Skuballa 2011, Speck et al. 

2013). Preliminarily sampling of ticks from the Bienwald vegetation supports these 

findings (Muders and Petney, unpublished data). As a result, the observed effect of 

low roe deer densities may be amplified further through higher tick abundance and 

might contribute to distinctly higher Rickettsia infection rates. Additionally, Rickett-

sia prevalences in ticks collected from European hedgehogs in the Bienwald did not 

exceed 17.3% (Speck et al. 2013). This fact underlines the importance of the role 

that that roe deer could play in the epidemiological cycle of Rickettsia spp. 

Climatic and regional differences, together with differences in the vegetation, could 

lead to variation in Rickettsia prevalence (Halos et al. 2010). The Bienwald and the 

study area investigated by (Stańczak et al. 2009) have about the same proportion of 

woodland (≈78%), but have considerably different infection rates. In this context, 

roe deer prefer forest edges (Tufto et al. 1996), but these habitats in turn show 

higher tick mortality rates (Randolph 2004). The occurrence of I. ricinus seems to be 

higher in pure woodlands (Randolph 2004). Conversely, Halos et al. (2010) found 

that Rickettsia spp. prevalence in questing I. ricinus was maximal on pasture with 

medium forest fragmentation. Consequently, it is possible that the risk of infection 

with Rickettsia spp. depends on forest structure, as has been observed for the TBE 
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virus in Italy (Rizzoli et al. 2009). A study of the opposing effects of I. ricinus as vec-

tors and roe deer as probably non-compatible hosts for Rickettsia spp. in relation to 

their habitat preferences could provide further insight on the pathogen distribution. 

Such investigations could also provide additional information on the possible reser-

voir incompetence of roe deer. 

The screening of D. reticulatus from roe deer in Germany (Dautel et al. 2006) showed 

that 32.4% of ticks were infected with Rickettsia. Moreover, Dautel et al. (2006) re-

ported an average prevalence of 23% for all Rickettsia-positive ticks from the inves-

tigated deer species (i.e. red deer, roe deer and fallow deer), while all rickettsial DNA 

was from the RpA4 strain. Comparing these findings to my results shows that the 

tick species, as well as the Rickettsia species, may lead to variation in the infection 

rates. One explanation of this behavior could be the differing modes of life of differ-

ent tick species, including parameters such as host preferences and feeding behav-

iors (Sonenshine and Roe 2013b). However, the infection prevalences reported by 

Dautel et al. (2006) were averaged from all of Germany and matched those pre-

sented here most closely in comparison to the other studies, although I. ricinus was 

not considered. Therefore, it would be interesting to see the results of similar stud-

ies comparing the prevalence of Rickettsia spp. in I. ricinus considering multiple sam-

pling sites within Germany and Europe. 

5.2.2.2 Wild boar 

Stefanidesova et al . (2007) found no evidence of Rickettsia spp. in spleen samples 

from wild boar. However, 7% of the whole blood from wild boar was positively 

tested by PCR for R. helvetica in the study of Sprong et al. (2009). In Spain, Ortuño et 

al. (2007) reported that 52.2% of wild boar were seropositive to R. slovaca. Skin bi-

opsies from wild boar in Italy (Selmi et al. 2009) identified a single positive for R. 

slovaca, whereby a D. marginatus collected from the skin was also positive. Never-

theless, it is still unclear whether wild boar are able to develop a rickettsemia which 

could then infect feeding ticks. Equivalently to roe deer, wild boar in the Bienwald 
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appear not to harbor Rickettsia spp., since none of the organ samples showed posi-

tive during the PCR analyses (Section 5.1.3.1). 

A study on D. marginatus collected from wild boar in France revealed an infection 

prevalence by R. slovaca of 15.7% (Sanogo et al. 2003). In Spain, de la Fuente et al. 

(2004) registered a higher infection rate of 18% in D. marginatus on wild boar, with 

mainly R. slovaca being detected. Ortuño et al. (2007) reported R. slovaca in 30.5% 

of the D. marginatus from wild boar in northern Spain, while their study showed no 

significant deviation between questing ticks and those feeding on wild boar. A simi-

lar spotted fever group (SFG) prevalence was found by Selmi et al. (2009) with 

33.9% of ticks infected. However, none of these studies investigated the Rickettsia 

prevalence in I. ricinus on wild boar, nor did they find R. helvetica in any of the col-

lected ticks.  

In the present study the overall Rickettsia prevalence in I. ricinus from wild boar was 

distinctly higher (41.7%) than in the previous studies. In addition, I was able to show 

that Rickettsia spp. prevalence in ticks from wild boar decreased significantly with 

a higher level of engorgement (Section 5.1.3.1). This observation could be a first in-

dicator for a rickettsiacidal influence of wild boar similar to roe deer. I. ricinus from 

female boar did not have any Rickettsia spp. and all ticks removed from piglets had 

a significantly higher infection rate than for those removed from older boar. This 

suggests that immunity had not been developed in piglets. To date, comparative 

studies in Europe, and particularly in Germany, are missing. 





 

 

6  
Conclusion and perspectives 

6.1 Summary 

This is the first and most comprehensive study of roe deer and wild boar in a com-

mon habitat, including the collection of ticks and host organ samples over 3 years. 

My study is not only comprehensive with respect to the number and continuity of 

the acquired samples, but also in the sense that it included potential biotic and abi-

otic factors that have not been considered any previous study. The data acquisition 

encompassed a multitude of parameters, such as host species, host age, host sex, 

host condition, pregnancy, lactation, body mass, infestation with other parasites, cli-

mate (e.g. temperature, rainfall, cloud coverage, relative humidity and sunshine du-

ration), tick age/sex, attachment site, level of engorgement and mating status. In ad-

dition, I calculated the relative tick densities at the attachment sites, niche indices, 

the spatial niche overlap, the degree of tick aggregation, as well as 𝐺𝐷𝑀𝐼 and tick 

induced blood loss. By this means, I gained the largest dataset concerning ticks, roe 

deer and wild boar currently available worldwide. 

This dataset allowed the study of seasonal changes together with the analyses of 

annual variations of the tick burden on both hosts, as well as of the tick-host-patho-

gen interactions. In a first step, correlation and factor analyses were used to identify 

key factors influencing the dynamics of the ticks and the pathogens which they 

transmit. To rank the importance of these factors, I applied multiple decision tree 

analyses to different subsets of the data. To gain an even deeper understanding of 
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how the key factors acted on tick abundances, population composition and pathogen 

prevalence appropriate state-of-the-art modeling techniques were used. In Central 

Europe, and in particular in Germany, such a three-step statistical evaluation is 

unique. This approach shows how important a long sampling period is for the iden-

tification of the factors influencing inter-annual variation. 

1) I was the first to find that tick aggregation was lowest on roe deer yearlings for 

all tick life history stages, while fawns and hosts in a poorer condition showed 

a higher aggregation of ticks. At the same time, tick abundance was highest on 

yearlings, followed by adults and fawns. I propose that these patterns might be 

related to the “exposure” hypothesis, and that thus roe deer movement patterns 

might significantly influence tick aggregation and abundance. 

2) Wild boar piglets were most intensely infested by I. ricinus. The lower tick abun-

dance on older boar could be explained by the higher proportion of dead ticks 

on these host animals. The higher tick mortality might be a first indicator that 

these age groups have a higher physical defense and/or an acquired resistance 

to ticks. 

3) This study also showed that tick abundance on roe deer and wild boar not only 

follows seasonal changes, but can also have a high variability between years. 

4) Climatic factors have a strong influence on roe deer and wild boar, explaining 

the bimodal seasonal peak densities of the ticks. Tick activity on roe deer 

started between 8 and 9 °C. I found the first evidence that ticks can be active on 

roe deer at temperatures as low as -1.8 °C. All of these observations indicate 

that ticks in the Bienwald are active all year. 

5) For wild boar, this study was the first that examined tick burden in relation to 

climatic parameters. Although sample sizes were low, cloud coverage, relative 

humidity and saturation deficit were significantly negatively correlated with 

tick density on this species.  

6) By using a decision tree analysis I determined an activity threshold in relation 

to relative humidity (80.4%) above which the tick infestation intensity of roe 

deer was reduced significantly.  
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7) Additionally, the GAMLSS models demonstrated for the first time that precipi-

tation had a significant, but non-linear relationship with adult and immature 

tick burden on both roe deer and wild boar.  

8) My results clearly confirmed a sex-biased tick behavior on roe deer, such that 

male deer were significantly more highly infested than females.  

9) So far, this study is the only one that considers host condition as an important 

factor for tick infestation. I demonstrated that healthier roe deer burdened with 

fewer other parasites carried significantly fewer ticks than roe deer in a poorer 

or crippled condition. Pregnant or nursing female deer had a significantly 

higher infestation than other individuals.  

10) I determined that only very few roe deer are likely to suffer from tick induced 

blood loss.  

11) My attachment site analysis revealed that adult ticks preferred the abdomen 

and the sternum, while immatures were predominantly found on the ears. With 

respect to the IFDH, I confirmed that ticks actively choose their feeding site sup-

porting the hypothesis of pheromone-based on-host aggregation of I. ricinus 

which plays a key role for co-feeding.  

12) The overall tick abundance on wild boar, with many dead ticks, was significantly 

lower than on roe deer. Although both species share a common habitat, wild 

boar are a less important food source for ticks, while roe deer are the dominant 

host for adult female ticks.  

13) In comparison to previous model-driven analyses that were based on signifi-

cantly smaller datasets, I demonstrated that the GAMLSS approach applied to 

long-term, raw data can reveal details of the relationships between tick parasit-

ism, biotic and abiotic factors, even if they are non-linear.  

14) In particular, with respect to wild boar, I was able to successfully estimate GAM-

LSS models for the first time to gain a better understanding of the relationship 

between climatic factors and tick infestation.  

15) The multinomial logistic regression that modelled the composition of tick pop-

ulation is also new in the sense that it included data from each season of the 3 

years and from all body parts. 
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With respect to Rickettsia and Borrelia infections I was able to confirm past research 

result, but also made several novel findings:  

1) R. helvetica was the only Rickettsia species found in the Bienwald with a mean 

prevalence in ticks from roe deer and wild boar reaching almost 50%. Such high 

infection rates in ticks have not been observed by any other previous study.  

2) In my study, none of the organ samples showed positive for these pathogens, 

confirming that roe deer and wild boar are reservoir-incompetent hosts for B. 

burgdorferi s.l., as well as for Rickettsia spp.  

3) One of my main novel findings was that the prevalence of R. helvetica was sig-

nificantly lower in engorged I. ricinus than in unengorged individuals. This was 

also the reason why male ticks were more likely to be infected than females.  

4) This observation was true independently of the host species.  

5) In addition, with higher levels of engorgement the Rickettsia infection rate de-

creased significantly.  

6) Therefore, I hypothesize that roe deer and wild boar blood is able to kill Rick-

ettsia spp. in the feeding ticks. For both host species, this is the first report of a 

rickettsiacidal influence.  

7) My study of this effect showed that interactions between multiple factors, such 

as impaired and increased blood feeding, co-feeding, climate, host population 

density and tick abundance, can be used to explain the lower infection preva-

lences in feeding I. ricinus ticks.  

8) Thereby, I observed for the first time that ticks collected from wild boar piglets 

had a significantly higher Rickettsia infection rate than for those removed from 

older boar suggesting that immunity in piglets had not been developed.  

9) The B. burgdorferi s.l. infection rate of I. ricinus in the Bienwald was relatively 

low (3.4%), with higher infection prevalences in male ticks than in females, 

while prevalences showed a seasonal pattern in synchrony with tick abun-

dance.  

10) Ticks from yearlings had the highest Borrelia prevalences.  
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11) Additionally, ticks found on the ears of roe deer and wild boar showed signifi-

cantly increased infection rates.  

12) My finding that engorged female ticks on roe deer were never infected, clearly 

confirmed that this host species is reservoir incompetent for B. burgdorferi s.l. 

This leads to the conclusion that increasing population densities of deer could 

reduce the infection rate significantly.  

13) For the first time, my study proposes a borreliacidal effect for wild boar and 

thus of a reservoir-incompetence to B. burgdorferi s.l.  

In summary, both host species can be considered as dilution hosts for B. burgdorferi 

s.l. species and Rickettsia spp., whereby roe deer play a key role as host for I. ricinus 

ticks providing a platform for co-feeding and tick propagation. The role of wild boar 

seems to be considerably less important in the epidemiological life cycle of tick-

borne diseases, although this species could serve a propagation host for ticks and 

thus for pathogens as well. 

Results from the northern (e.g. Norway) and southern parts (e.g. Spain and Italy) of 

Europe showed considerable differences to my study. This suggests that result from 

other regions are not transferable to Central Europe. My study showed that a con-

tinuous and coherent sample acquisition is essential to make general statements 

about tick behavior and pathogen life cycles. Therefore, additional long-term studies 

in Central Europe, and particularly in Germany are needed to gain results for com-

parative purposes. The presence of the agent of Lyme borreliosis and of SFG Rickett-

sia in the Bienwald pose a potential risk for humans and justifies further research. 

6.2 Future Work 

The population density of ungulate hosts, particularly roe deer, strongly affects tick 

abundance (Wilson et al. 1984, Hudson et al. 2001, Perkins et al. 2006, Rizzoli et al. 

2009, Tagliapietra et al. 2011). Therefore, accurate estimates of population densities 

are unavoidable in order to make results from different studies comparable on an 

absolute scale. Concurrently to the collection of ticks and organ samples, the roe 
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deer density in the Bienwald has been estimated based on faecal density and cam-

era-traps (cf. Ebert et al. 2012, Ehrhart 2012). Combining host density data with my 

dataset could provide more information on the relationships between ungulate host 

species and tick burden. For wild boar, very little research on the effect of population 

density on tick abundance has been conducted. Thus, a study that estimates host 

population density is strongly recommended. 

In addition to this, tick samples from the vegetation by drag sampling (Neumaier 

2012, Zöller 2014), from forest rodents (Schweikert 2012, Schaeffer and Petney, un-

published data) and from sheep (Moser 2012) were collected in the Bienwald during 

the period of my study. Within the BWPLUS project similar studies were carried out 

simultaneously (Fritschmann 2012, Petney et al. 2014, Sebastian et al. 2014, Pfäffle 

et al. 2015a, 2015b). Moreover, other environmental factors, such as vegetation and 

soil types, as well as the community structure of available hosts in the Bienwald 

could affect ticks and pathogens (Sonenshine and Roe 2013a, 2013b). A combination 

of those datasets was beyond the scope of this thesis, but could provide a more com-

plete view of the tick and pathogen life cycles within the study area as well as on a 

larger scale (left vs. right bank of the Rhine). Additionally, future long-term studies 

on interactions of ticks, roe deer, wild boar and pathogens in the Bienwald and 

within the BWPLUS project are highly recommended using my results as a refer-

ence. 

During the sample acquisition of this study blood samples were collected from all 

host animals. Their evaluation could provide more information on host condition, 

reservoir competence and pathogen transmission. For example, an analysis of host 

testosterone levels could provide additional confirmation of the sex-biased behavior 

of I. ricinus, and about the influence of ticks on host condition. The determination of 

Borrelia and Rickettsia genospecies was not possible for all samples due to financial 

constraints. However, the samples are still available for future analyses. Addition-

ally, future investigations could determine whether other pathogens (e.g. Babesia 
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spp., Bartonella spp., Ehrlichia spp., etc.) are present in the ticks and/or in the organ 

samples collected in the Bienwald.  
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B 

Mean group weights 

Table B.1: Mean body mass for groups of animals (�̅�𝒈) together with the total minimum 

(𝑀𝑚𝑖𝑛) and maximum (𝑀𝑚𝑖𝑛) deviation from the average masses (second last and last 
column) used to calculate the 𝐺𝐷𝑀𝐼𝑠 of each individual as described in Section 3.3.4. 

    Animals �̅�𝒈 𝒎𝒊𝒏(𝒎 − �̅�𝒈)  𝒎𝒊𝒏(𝒎 − �̅�𝒈) 

R
o

e
 D

e
e

r 

A
d

u
lt

 male 

Jan/Feb 5 15,40 -5,19 0,81 
Mar/Apr 2 15,00 -1,19 -1,19 
May/Jun 6 16,18 -1,19 1,11 
Jul/Aug 1 14,70 -1,49 -1,49 
Sep/Oct 2 15,50 -1,19 -0,19 
Nov/Dec 30 16,50 -4,19 5,81 

female 
Jan/Feb 23 15,91 -2,32 1,68 
Sep/Oct 1 17,00 0,68 0,68 
Nov/Dec 60 16,47 -3,32 4,68 

Y
e

a
rl

in
g

 male 
May/Jun 9 13,48 -3,76 4,34 
Nov/Dec 8 11,75 -2,66 1,34 

female 

Jan/Feb 2 13,50 -0,82 0,18 
May/Jun 6 13,32 -1,22 1,18 
Sep/Oct 3 13,00 -3,82 1,18 
Nov/Dec 6 14,83 0,18 2,18 

F
a

w
n

 male 
Jan/Feb 6 12,83 -0,01 1,99 
Sep/Oct 1 6,30 -5,71 -5,71 
Nov/Dec 28 12,04 -3,01 1,99 

female 
Jan/Feb 9 11,44 -3,67 3,33 
Sep/Oct 4 8,50 -4,17 -1,67 
Nov/Dec 35 12,09 -3,67 3,33 

W
il

d
 b

o
a

r 

A
d

u
lt

 male 
Jan/Feb 7 59,86 -8,80 20,20 
Sep/Oct 1 67,00 5,20 5,20 
Nov/Dec 17 62,29 -13,80 12,20 

female 
Jan/Feb 15 56,20 -11,34 28,66 
Sep/Oct 1 39,00 -17,34 -17,34 
Nov/Dec 42 56,81 -18,34 15,66 

Y
e

a
rl

in
g

 male 

Jan/Feb 8 40,13 -15,13 14,87 
May/Jun 1 49,20 4,07 4,07 
Sep/Oct 2 27,00 -18,13 -18,13 
Nov/Dec 29 47,62 -16,13 23,87 

female 
Jan/Feb 8 41,38 -20,53 13,47 
May/Jun 1 21,00 -23,53 -23,53 
Nov/Dec 34 45,97 -12,53 17,47 

P
ig

le
t male 

Jan/Feb 28 22,61 -16,28 16,72 
Mar/Apr 1 9,00 -14,28 -14,28 
May/Jun 1 18,70 -4,58 -4,58 
Sep/Oct 1 17,00 -6,28 -6,28 
Nov/Dec 57 24,05 -18,28 16,72 

female 
Jan/Feb 33 23,42 -11,91 22,09 
Nov/Dec 57 22,61 -17,91 17,09 

   Total 608 26,72 𝑴𝒎𝒊𝒏 = -23,53 𝑴𝒎𝒂𝒙 = 28,66 





 

 

C 

Equipment and consumables 

Table C.1: All used devices and their manufactures. 

Device Manufacturer 

Gel electrophoresis 

Agarose gel chambers LTF Labortechnik, Wasserburg 

Gel documentation system Bioprofil® LTF Labortechnik, Wasserburg 

Power Supply PowerPac™ 300 Bio-Rad Laboratories, München 

Precision balance PM 2000 Mettler-Toledo, Giessen 

Thermal Transfer Printer P90 Mitsubishi, Barcelona 

General 

Centrifuge (Z233M-2) Hermle, Wehingen 

Minishaker MS 2 IKA, Staufen 

Pipettes Eppendorf, Hamburg 

Refrigerated centrifuge (5417R, 5804R) Eppendorf, Hamburg 

Sterile workbench BDK, Sonnenbühl 

Tabletop centrifuge (5415D) Eppendorf, Hamburg 

Ultrapure water system Millipore, Schwalbach 

Vortex™ (Genie 2M) Bender & Hobein, Schweiz 

Nucleic acid extraction 

Biohit eLINE® electronic pipette Sartorius Lab Instruments, Göttingen 

Maxwell® 16 Promega, Mannheim 

NucliSENS® easyMag® bioMérieux, Nürtingen 

PCR 

LightCycler® 1.5 Roche Diagnostics, Mannheim 

Thermocycler: GeneAmp® PCR System 9700 Applied Biosystems, Weiterstadt 

Sample storage 

Deep freezers (-20 °C; -70 °C) Kendro, Hanau; Bosch, Gerlingen 

Refrigerators Liebherr, Biberach 

Sequencing 

Sequencer: ABI Prism® 310 Genetic Analyzer Applied Biosystems, Weiterstadt 
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Table C.2: All used reagents and their suppliers. 

Reagent Supplier 

Gel electrophoresis 

1 × TBE Puffer (Tris, Boric acid, EDTA) Merck-Millipore, Darmstadt 

100 bp ladder Amersham Pharmacia, Freiburg 

Boric acid Merck, Darmstadt 

Bromophenol blue Sigma-Aldrich, Taufkirchen 

Ethidium bromide (1%) Merck, Darmstadt 

Ficoll Sigma-Aldrich, Taufkirchen 

peq Gold® Universal Agarose Peqlab, Erlangen 

General 

Diethylpyrocarbonate (DEPC) Fluka/Sigma-Aldrich, Steinheim 

Ethanol Merck, Darmstadt 

Hydrochloric acid (25%) Merck, Darmstadt 

Magnesium chloride Merck, Darmstadt 

Tris-HCl Merck, Darmstadt 

Nucleic acid extraction 

Guanidine isothiocyanate (GIT) Carl Roth, Karlsruhe 

RNasin® Promega, Mannheim 

Triton™ X-100 Sigma-Aldrich, Taufkirchen 

PCR 

AmpliTaq® DNA-Polymerase, incl. 10 × buffer, MgCl2 (25 mM) Applied Biosystems, Weiterstadt 

dNTP-Set (100 mM Solutions) GE Healthcare, München 

dUTP Fermentas, St. Leon-Rot 

Nuclease-free water Promega, Mannheim 

Primer Tib Mol, Berlin 

Tris HCl Merck, Darmstadt 

Uracil-DNA glycosylase Fermentas, St. Leon-Rot 

Sequencing 

HiDi™ formamid Applied Biosystems, Weiterstadt 

Performance optimized Polymer 6 (POP-6) Applied Biosystems, Weiterstadt 

Sodium dodecyl sulfate (SDS) Serva, Heidelberg 

 



 Appendices 

 253 

 

Table C.3: All used kits and their suppliers. 

Kit Supplier 

Nucleic acid extraction 

Reagent cartridges Maxwell® 16 Tissue DNA 
Purification Kit (AS1030) 

Promega, Mannheim 

PCR 

LightCycler® DNA Master HybProbe Roche Diagnostics, Mannheim 

Sequencing 

BigDye® Terminator v1.1Cycle Sequencing Qiagen, Hilden 

DyeEx™ 2.0 Spin Kit Qiagen, Hilden 

QIAquick® PCR Purification Kit Qiagen, Hilden 

 

Table C.4: All used kits and their suppliers. 

Material Manufacturer 

General 

Disposable pipet tips, stuffed Biozym, Hessisch Oldendorf 

Disposable pipet tips, non-stuffed Eppendorf, Hamburg 

Safestock Eppendorf Cups (0.5 ml; 1.5 ml; 2 ml) Eppendorf, Hamburg 

Latex gloves Asid Bonz, Herrenberg 

Scalpels Braun, Tuttlingen 

PCR 

Glass capillaries: LightCycler® Capillaries (20 μl) Roche Diagnostics, Mannheim 

PCR vials (0.2 ml) Biozym, Hessisch Oldendorf 

Sample acquisition 

Multivette® for EDTA and Serum samples Sarstedt, Nümbrecht 

  

Sequencing 

Capillaries for Sequencer Applied Biosystems, Weiterstadt 





 

 

D 

Solutions and buffers 

For Nucleic Acid Extraction 

All solutions and buffers were prepared with nuclease-free water or Diethylpyro-

carbonate (DEPC) for the inactivation of RNAses. Vessels for the production of solu-

tions and for their storage were hot air sterilized at 200 °C for 4 hours. Plastic ma-

terials were purchased nuclease-free. 

DEPC Water 

 make a 10% DEPC stock solution in absolute ethanol (100 ml DEPC + 900 ml 

ethanol) and store in a brown glass bottle at room temperature 

 prepare a 0.1% utility solution by dilution of the stock solution at a ratio of 1 

to 100 with H2Obidest (10 ml DEPC solution + 990 ml H2Obidest), let the utility 

solution incubate for 2 hours at 37 °C, and then store the DEPC utility solution 

at 4 °C in a glass jar. 

The used DEPC solution was autoclaved. For the storage the DEPC solutions, the 

plastic screw caps were inserted for 2 hours at 37 °C in the DEPC utility solution and 

then autoclaved (30 min at 120 °C). 

0.1 M Tris-HCl solution (pH 6.4) 

 solubilize 12.11 grams of Tris in 800 ml of DEPC utility solution 

 adjust the pH value with HCl (25%) to 6.4 

 fill up to 1 l with DEP utility solution 

 store in glass bottles with plastic screw caps. 
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Lysis Buffer for Tissue Pools 

 solubilize 120 g guanidine isothiocyanate (GIT) in 100 ml 0.1 M Tris-HCl (pH 

6.4) at 56 °C 

 add 22 ml of 0.2 M EDTA (Na salt, pH 8.0) and 2.6 g Triton™ X-100 and store in 

a dark glass bottle at room temperature. 

For Agarose Gel Electrophoresis 

Tris/Borate/EDTA (TBE) buffer (5 ×) 

 53.9 g Tris  

 27.5 g boric acid 

 20 ml EDTA  

 solubilize in H2O and fill up to 1 l. 

Ethidium Bromide Solution 

 dilute ethidium bromide stock solution (1%) to a 0.1% utility solution with 

H2Obidest at a ratio of 1 to 10. 

Loading Buffer 

 20% Ficoll  

 0.25% Bromophenol blue  

 fill with H2O up to 20 ml. 

100 bp Ladder 

 dilute stock solution with nuclease-free H2O at a ratio of 1 to 8. 

 

 



 

 

 


