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Abstract 
This thesis deals with variation in mortality of roe deer fawns, over time and in 
space, caused by red fox and Eurasian lynx predation in a boreal landscape. The 
thesis considers historic and recent effects of vole population dynamics on red fox 
predation on roe deer fawns, using long term time series from Grimsö Wildlife 
Research Area. Historically, the vole population of south-central Sweden has varied 
cyclically, causing red fox and roe deer fawns to fluctuate synchronically in 
accordance with the alternative prey hypothesis, but following a dampening of vole 
cycle amplitude this relationship has ended.  

The thesis also covers mortality of roe deer fawns in a multi-predatory context as 
both red fox and Eurasian lynx are revealed as important predators of roe deer 
neonates in a study using radio marked fawns. A study on roe deer female habitat 
choice and survival of fawns points out a possible trade-off in does between high 
quality forage and survival of fawns.  

Weak, but long reaching spatial effects of predation are found as the relation 
between roe deer fawn survival and distances to fox dens with litters are 
investigated, and a study on supplemental feeding of red fox as a means of relieving 
fawns from predation pressure proves this practice futile in boreal forest.  
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1 Introduction 

1.1 Aims 

The main aim of this thesis is to quantify the predation, from both red fox 
and lynx, on roe deer fawns in boreal forest. Further I will investigate the 
temporal and spatial variation in predation on roe deer fawns and attempt to 
explain the observed variation by using variables like vole density, predator 
density, roe deer density, climate and distance to red fox dens. I will 
compute a possible trade-off in roe deer does between present offspring and 
females’ own survival and future offspring. At last I will present an applied 
study on supplemental feeding of red fox as a means of increasing survival 
for roe deer fawns in boreal forest, and share thoughts on future research 
within this field.  

1.2 Regulation of prey species 

The size and stability of populations is one of the most important topics in 
population biology. In prey species, population regulation is thought to be 
carried out in two different ways: ‘bottom-up’, where prey are regulated by 
resources only and reaches their environmental carrying capacity (K), and 
‘top-down’, where predators regulate and stabilize the density of the 
population below K (Hairston et al, 1960; Sinclair, 1995). Of course, 
predation can occur in both regulatory systems, but in the case of ‘bottom-
up’ regulated populations predation is thought to occur under 
compensatory forms rather than additive. Errington (1946) introduced the 
terms additive and compensatory mortality and he strongly advocated the 
latter, where only weak and sick prey that would otherwise have died from 
disease are killed by predators.  
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The view that predators only kill a ‘doomed surplus’, and that prey 
populations are regulated mainly by density dependent food limitation, as an 
effect of intraspecific competition was the dominating opinion during a 
large part of the last century until finally strongly questioned in the late 20th 
century (e.g. Erlinge et al., 1984; Erlinge, 1987). From that time onward a 
number of studies have made it clear that a prey population can be 
regulated by predation rather than resources under certain circumstances 
(e.g. Lindström et al., 1994; Sinclair, 1995; Sinclair et al., 2003).  

Thus, predation has been found to be a strong regulating factor in 
certain prey populations, but for a predator species to be able to regulate a 
prey population a number of demands must be met. The predator must 
have a potential to respond rapidly by means of numerical and functional 
response to an increase in prey population density (Holling, 1959a; Holling, 
1959b; Holling, 1965) as well as an ability to prevail during a decline in 
prey density.   

In order to survive at times when main prey is scarce, many predators 
turn their attention to alternative prey species through functional response. 
The alternative prey hypothesis states that a predator with a strong 
preference for a main prey that fluctuates in numbers between years, will 
switch to an alternative prey when the main prey is scarce (Hagen, 1952; 
Lack, 1954; Hörnfeldt, 1978; Angelstam et al., 1984; 1985; Small et al., 
1993). A number of studies found evidence that supported the alternative 
prey hypothesis and proved that predation can regulate the population size 
of a prey species (Lindström et al., 1987; Marcström et al., 1988; 1989; 
Lindström et al., 1994; I).  

The shared predation hypothesis also recognize the fact that predators 
can regulate a prey population but states that predators kill prey 
unselectively, thus synchronizing population oscillations of sympatric prey 
species (Norrdahl & Korpimäki, 2000). From the prey point of view, 
periodic outbreaks are means of escaping top-down regulation and instead 
becoming resource limited as follows from Holling type III functional 
response in predators.  

The principal difference between alternative prey hypothesis and shared 
predation hypothesis seems to be that a strong functional response in 
predators cause low predation on alternative prey during years of high main 
prey density (possibly with a time lag) in predator prey systems functioning 
according to the alternative prey hypothesis. On the other hand, in systems 
where the shared predation hypothesis is applicable, strong numerical 
response of predators cause high predation pressure on both alternative and 
main prey simultaneously. 
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1.3 Ungulate Mortality and Predation 

The general pattern of mortality in ungulate species, in absence of predators, 
is U-shaped with high mortality in juveniles and old animals, whereas 
animals of prime age typically show low mortality rates (Caughley, 1966). 
Juveniles are the most sensitive to predation of all age classes and a number 
of studies show that predators prefer juvenile ungulates, and that juveniles 
are over-represented in predators’ diet as compared to ungulates of other 
age classes (Carbyn & Trottier, 1987; Mills & Shenk, 1992; Fuller & Kat, 
1993; Huggard, 1993; Mattioli et al., 1995; Okarma et al., 1995). An 
explanation for predators favoring juveniles is that predators often are 
smaller than the average adult ungulate and that there is a risk involved 
when a predator tries to kill an adult ungulate that defends itself. There are 
observations of ungulates harming, injuring, and even killing predators 
(Mech, 1981; Weaver et al., 1992). Ungulate juveniles on the other hand, 
are small and relatively harmless to predators, thereby being an ‘easy’ prey.  

Starvation is a major cause of mortality in the old age-classes of 
ungulates, likely due to dental wear. Wear of teeth makes it increasingly 
difficult for animals to grind feed and gestation gets disrupted causing 
animals to die from starvation even though there is no shortage of feed 
(Gaillard et al., 1993). Thus, ungulates above prime age die from predation, 
disease and most typically from starvation due to dental wear, and there are 
several indications of senescence in ‘over aged’ ungulates (Bérubé et al., 
1999; Loison et al., 1999; Catchpole et al., 2000; Mysterud et al., 2001).  

Mortality of ungulates is largely density dependent (Jorgenson et al., 
1997; Singer et al., 1997; Portier et al., 1998; Kjellander, 2000). At high 
ungulate densities, food gets scarce and a larger proportion of 
malnutritioned animals expose themselves to predators in attempts to find 
food (McNamara & Houston, 1987). A higher proportion of ungulates 
starve to death as food resources diminishes, and frequencies of sick animals 
increases with number of starving individuals (e.g. McNamara & Houston 
1987; for a review see Kie, 1999).   

A number of diseases affect wild ungulates, for example; foot and mouth 
disease, tuberculosis, sarcoptic mange, and a range of viral diseases (e.g. 
Baskin & Danell, 2003). Disease may cause epidemics and effect local 
populations severely (e.g. Sinclair et al., 1985), but, overall mortality of 
ungulates caused by disease is generally considered to be low in the presence 
of predators. 
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1.4 Predation on Neonate Ungulates 

The main anti predator strategies for ungulate neonates are hiding and 
following (hiders and followers sensu Lent, 1974; Byers, 1997). In follower 
species, juveniles try to follow the mother almost instantly after birth. 
Follower species include the equids, muskox (Ovibus moschatus), sheep (Ovis 

aries), large bovines and reindeer (Rangifer tarandus). All of these species 
probably evolved in open landscapes that offered little cover for juveniles 
(Rutberg, 1984; Shackleton & Haywood, 1985). Moose (Alces alces) on the 
other hand is a follower species living in the boreal forest but has been 
shown to choose place of birth to maximize cover for the calf in order to 
avoid predation in the first few days when the calf is too small to follow the 
mother (Bowyer et al., 1999). In hiders the juveniles do not follow the 
mother immediately after birth. Instead, females hide their young the first 
weeks after birth and keep them in seclusion, visiting them a number of 
times per day for nursing and caring (e.g. Espmark, 1969). Most cervid 
species, with reindeer as an exception, as well as a variety of antelopes and 
gazelles are considered to be hider species (Lent, 1974). Hider species are, in 
general, linked to forest or other dense habitat which offer shelter for 
juveniles (Lent, 1974). The main part of juvenile mortality in hider species 
occur when juveniles are old enough to try to outrun a predator, but still 
too young to succeed (e.g. Aanes & Andersen, 1996). Another characteristic 
difference between hiders and followers, besides habitat, is that hider species 
in general have a small body size whereas follower species are larger.  

A 60% survival rate in mountain goat (Oreamnus americanus) kids up to 
one year of age has been reported. Predation from several predators was the 
sole natural cause of death (Festa-Bianchet et al., 1994). A Canadian study 
revealed coyotes (Canis latrans) to be a severe predator on fawns of white-
tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) during 
autumn (Festa-Bianchet et al., 1994). Coyotes have also been recognized as 
predators on lambs of bighorn sheep (Ovis canadensis). In one study less than 
25% survival of the lambs was reported, with 67% of lamb mortality 
occurring within 3 days of birth (Hass, 1989).  



 13 

 
1.5 Boreal Small Game Dynamics 

The field of small game species interactions and dynamics has been a subject 
for many studies in boreal Sweden (e.g Hörnfeldt, 1978; Angelstam et al., 
1984; Hörnfeldt et al., 1986; Lindström et al., 1987; 1994; Helldin et al., 
2006; Helldin & Danielsson, 2007) and elsewhere in the northern 
hemisphere (e.g. Krebs et al., 1995; Krebs et al., 2001). Part of this long-
term interest from ecologists in dynamics is probably explained by the fact 
that dynamics tend to change as soon as one or two parameters are altered.  

In Scandinavia, and especially within the boreal forest ecosystem, a few 
crucial parameters have changed in later years. Firstly, there is a reported 
change in ecosystem dynamics due to recent re-colonization and expansion 
of large carnivores (Sand et al., 2006) and, secondly, there is a change in the 
dynamics of voles (Hörnfeldt, 2004; Hörnfeldt et al., 2005). Both these 
parameters are probably of vital importance to the small game community 
dynamics and to the ecosystem as a whole. The consequences of these new 
dynamics are still only partly understood, and many established facts 
forming the basis for game management therefore need to be re-evaluated 
in order to foresee trends in small game populations and to supply managers 
with updated and accurate information 
 

1.6 Lifetime Reproductive Success 

Individual differences in juvenile survival are one of the main components 
that cause variation in lifetime reproductive success among breeding females 
in birds as well as in mammals (Clutton-Brock et al., 1988). Ungulate males 
do not take part in parental care, so a successful raise of offspring is 
dependent on maternal qualities only (Trivers, 1972; Saether & Gordon, 
1994). Ungulate neonates are vulnerable to cold and wet weather, 
starvation, diseases and accidents, but the most common cause of mortality 
is predation (Linnell et al., 1995).  

Therefore, predators are expected to exert a strong selection pressure on 
ungulate mothers and favor the evolution of a neonatal rearing behavior 
that will minimize predation risk. Thus, the survival of neonates may be 
dependent on maternal qualities like physical condition but also age, 
experience and dominance rank, habitat choice and anti-predatory behavior 
(Ozoga & Verme, 1986; Smith, 1987; Mech & McRoberts, 1990; Nixon & 
Etter, 1995; Byers, 1997; Nielsen et al., 2004). In order to maximize 
lifetime reproductive success, females must also balance investment in 
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current offspring against own survival and future reproduction (Stearns, 
1992).  
 

1.7 The Temporal and Spatial Aspects of Predation 

Severity of predation pressure on an ungulate population may vary over 
time. The reasons for this are numerous. Variation may occur between 
years as the number of predators or prey varies depending on some extrinsic 
factor, but also over season as availability of the prey varies. For example 
Lingle (2000) reports on an increase of deer contents in coyote scats in 
Canada, as soon as ground squirrels (Citellus sp.) starts to hibernate and a 
decrease of deer contents in scats as soon as ground squirrels again become 
available to coyotes in spring. Snow conditions in winter may render prey 
more or less vulnerable to predation (Cederlund & Lindström, 1983). 
Between years variation in predation pressure can also be because of an 
outbreak of disease in the predator (Lindström et al. 1994).  

Predation does not only vary over time but also in space. Habitat 
heterogeneity may offer sheltered areas where predators cannot reach prey, 
as for instance steep mountain areas (Murie, 1944), but also areas where 
predators’ hunting is facilitated. Kunkel & Pletscher (2000) found that 
moose are more vulnerable to wolf predation in valleys than in areas of 
higher altitude because the thin snow cover in valleys attract moose and 
cause a local higher moose density that facilitates hunting by wolves (Canis 

lupus). Husseman et al. (2003) found wolf kill sites in valley bottoms where 
prey were hindered in their flight by dense snow, whereas cougar (Puma 

concolor) kill sites were found in open shrub areas where shrub cover made 
stalking more successful.  

Landscape characteristics themselves, either natural or of anthropogenic 
origin, may also cause a spatial variation in predation. Bergerud (1988) 
found that a decline in caribou (Rangifer tarandus caribou) population density 
in British Columbia was partly explained by certain forest harvest practices 
that concentrated caribou in small patches rendering them vulnerable to 
wolf predation.  

Central place foraging behavior of a predator causes a varying predation 
pressure, which becomes weaker further away from the central place 
(Stevens & Krebs, 1986), and predator home range boundaries may create 
refuges for prey as predators avoid areas where they may encounter hostile 
conspecifics (Hoskinson & Mech, 1976; Mech, 1977; Rogers et al., 1980; 
Lewis & Murray, 1993).  
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1.8 Studied Species 

1.8.1 The Roe Deer 

The roe deer (Capreolus capreolus) is a small sized (20-30 kg), widely 
dispersed (Scandinavian Peninsula – Israel, Portugal – the Ural mountains) 
concentrate selector (i.e. having a demand for high quality, low fibre food, 
Hofmann, 1985) with a craving for herbs and deciduous browse (Duncan et 
al., 1998). It is the most widespread ungulate in Europe because of its 
flexible habitat requirements, but roe deer are probably originally adapted to 
forest habitats of earlier succession (Liberg & Wahlström, 1995). The roe 
deer can also be characterized as a solitary living (Hewison et al., 1998) 
income breeder (Andersen et al., 2000), with delayed parturition and 
synchronized birth period (Gaillard et al., 1993; Linnell, 1994; Aanes & 
Andersen, 1996).  

Typically roe deer appear alone or in small groups consisting of a doe 
with fawn(s) and / or a buck (Hewison et al., 1998). Females’ home ranges 
are overlapping and they do not defend a territory. The buck, on the other 
hand, defends a territory from spring until the end of the rut, which occur 
in late July or early August and the males’ territory overlaps with a number 
of females’ home ranges (Liberg et al. 1998).  

Most roe deer fawns are born in late May – early June, with 80 % of the 
fawns born within 20-30 days (Gaillard et al., 1993; Linnell, 1994; Aanes & 
Andersen, 1996). Being a typical hider species, roe deer does keep their 
neonates in seclusion for the first eight weeks, visiting them for nursing 2-7 
times a day during this time (Linnell, 1994).  

In Sweden, roe deer has been present for at least 10 000 years according 
to fossil records (Liljegren & Lagerås, 1993). The historic population range 
was the southern third of Scandinavia. Massive hunting from commoners in 
Sweden after abolishment of royal and aristocratic hunting monopoly in 
1789 (supposedly from fear of a French-inspired revolution) led to the near 
extinction of the species in Fennoscandia and in 1830 only about 100 
animals remained on the private estate Övedskloster in Scania where they 
were protected. Further protection and new hunting legislation in 
combination with the near extinction of wolves and Eurasian lynx (Lynx 
lynx) caused the roe deer population to expand throughout the 19th 
century (Cederlund & Liberg, 1995). The species further expanded in the 
20th century probably additionally favored by modern forestry and 
agriculture. A strong decline in red fox (Vulpes vulpes) numbers and a few 
mild winters caused the Swedish population to explode in the late 1980’s 
and early 1990’s (Lindström et al., 1994). By this time roe deer inhabited all 



 16 

of Sweden but the island of Gotland and the north westernmost mountain 
areas.  

The population peak was reached in 1993, when the national hunting 
bag was 390 000 animals, but since then a steep decline has been noted and 
today the national hunting bag is about 100,000 animals 
(www.jagareforbundet.se/viltet/viltovervakningen/avskjutningsstatistik), 
partly as a result of predator re-colonization.  
 

1.8.2 The Red Fox 

The red fox is a medium-sized generalist and an opportunistic predator 
inhabiting a circumpolar range. Its diet in Scandinavia consists mainly of 
voles (Microtus sp., Clethrionomys sp.) and mice (Mus sp.), but also 
capercaillie (Tetrao urogallus), black grouse (Tetrao tetrix), hares (Lepus sp.), 
roe deer and rabbits (Oryctolagus cuniculus) as well as berries, insects, small 
birds and carrion (Lindström, 1982).  Red fox is also a generalist when it 
comes to habitat requirements and is found in nearly all habitats within its 
range living in territorial groups of two to five individuals (Macdonald, 
1980; Niewold, 1980).  

During the summer red fox vixens are den bound predators, raising two 
to seven cubs and make use of a number of adjacent dens. In times of low 
densities of large predators red fox have been subject to a meso-predator 
release in Sweden (Elmhagen & Rushton, 2007), which is a strong evidence 
of competition among carnivores. It is known that red fox is killed by 
Eurasian lynx, either for food (Mattison, J. unpublished) or competitor 
removal (Helldin & Danielsson, 2007).  

A grim first outbreak of Sarcoptic mange caused by the mite Sarcoptes 
scabiei caused a near collapse of the Swedish red fox population in the 
1970’s and 1980’s, but since the late 1980’s red fox population has 
recovered in all its former range. According to Lindström et al. (1994), 
outbreak of sarcoptic mange in red fox at Grimsö Wildlife Research Area 
during 1983–1989, caused the numbers of roe deer to increase with 30%.  

1.8.3 Voles 

Field vole (Microtus agrestis) and bank vole (Clethrionomys glareolus) are the 
main prey species for red fox in Scandinavia. Population fluctuations of 
voles in northern and central Sweden have typically been of a cyclic nature 
during the 20th century, with three to four years between population 
density peaks.  
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In later years a circumpolar general decline in vole cycle amplitude has 
been observed (Kokorev & Kuksov, 2002; Hörnfeldt et al., 2005; Kausrud et 
al., 2008; III). Several small game species as mountain hare (Lepus timidus) 
and black grouse are known to follow the vole cycles in south-central 
Sweden as red fox switch to prey on these species when voles are scarce 
(Angelstam et al., 1985).  

1.8.4 The Eurasian Lynx 

The Eurasian lynx is a medium-sized felid predator largely specialized in roe 
deer (Haglund, 1966; Aanes et al., 1998), but capable of killing much larger 
prey as for instance red deer (Cervus elaphus)(Linnell et al., 2001). In 
reindeer husbandry areas semi-domestic reindeer are considered main prey 
for lynx (Pedersen et al., 1999; Sunde et al., 2000). Forest grouse are also on 
the menu as well as hares (Linnell et al., 2001).Roe deer is, however, the 
main prey for lynx in areas where they co-occur (Nilsen et al., 2009a), and 
lynx show no preference for any age class of roe deer (Andersen et al., 2007; 
Nilsen et al., 2009b). In Scandinavia lynx home range size varies between 
300-800 km² in females and 600-1400 km² in males (Linnell et al., 2001).  

1.9 The Studied Predator - Prey System 

In the light of the ongoing changes in vital ecosystem parameters; the re-
colonization of large carnivores (Sand et al., 2006) and the lessening of vole 
cycle amplitude (Hörnfeldt et al., 2005), resulting effects may be anticipated 
on many trophic levels. Neonate roe deer fawns suffer from high mortality 
rates due to predation by red fox and mortality rates exhibits a variation 
between years (Cederlund & Liberg, 1995; Aanes & Andersen, 1996). 
Between years differences in fawn mortality caused by red fox predation 
have been proposed to be an effect of prey switching behavior in red fox 
between microtine voles as their primary prey and roe deer fawns as an 
alternative prey (Lindström, 1994, Aanes & Andersen, 1996). This prey-
switching behavior has also been suggested in other predator–prey systems 
such as, e.g. coyote, mule deer fawns and microtine voles in North America 
(Hamlin et al., 1984) and eagle owl (Bubo bubo), microtine voles and several 
small game species in Finland (Korpimäki et al., 1990). In addition, Ural 
owls (Strix uralensis) (Korpimäki et al., 1990) and common buzzards (Buteo 

buteo) shift their diet from voles (main prey) to forest grouse species in the 
decline and low vole years (Reif et al., 2001). Thus, since red fox is known 
to be a predator of both roe deer and voles it may also be suspected that 
these two prey species would fluctuate synchronously, with a time lag in 
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accordance with alternative prey hypothesis in the same fashion as voles and 
mountain hare or voles and black grouse as shown by Angelstam et al. 
(1985). 

Eurasian lynx kill red fox in South-central Sweden through intraguild 
predation and it has been proposed that this may affect roe deer fawn 
survival positively (Helldin et al., 2006). This, however, is built on the 
assumption that roe deer fawns are not frequently killed by Eurasian lynx. If 
lynx predation on neonate roe deer fawns is reasonably large and additive to 
red fox predation, there might not be any positive effects of re-colonization 
of Eurasian lynx on roe deer survival.  

Red fox predation on roe deer fawns in boreal forest is generally linked 
to vole cycles in accordance with the alternative prey hypothesis (I). Fox 
density is thereby directly linked to vole density, but high fox predation on 
fawns occurs lagged one year after a vole peak, especially if it is a year of 
low vole density (i.e. years with many foxes and very few voles; I). 
However, from 1989 and onwards, the amplitude of the cycle of voles and 
other rodents has been dramatically dampened, possibly as an effect of 
climate change – an observation made also in other parts of Eurasia 
(Kokorev & Kuksov, 2002; Hörnfeldt et al., 2005; Kausrud et al., 2008; III). 
If there is a general lack of regular vole peaks, this may be expected to affect 
red fox predation patterns on roe deer fawns, and alter the relationship 
between voles, red fox, and roe deer fawns altogether.  
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2 Material and Methods 

2.1 Study Areas 

Two study areas are used for the papers of this thesis, Grimsö Wildlife 
Research Area (I, II, III, V) and Bogesund (IV). Grimsö Wildlife Research 
Area is located in boreal forest in south-central Sweden (59°40´N, 
15°25´E). The area is 130 km2  and covered to 74% by mixed conifer forest 
(Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)), while bogs, 
mires, and fens cover 18%. Farmland comprises 3% and lakes and rivers 
cover 5% of the area. Common deciduous tree species are aspen (Populus 

tremula) and birch (Betula pubescens, Betula pendula). The landscape is flat 
with altitude rising from 75 m above sea level in the south to 180 m a. s. l. 
in the north. For a more detailed description of Grimsö Wildlife Research 
Area see Swenson & Angelstam (1993). Roe deer population density has 
been censored by pellet group count since 1977. Red fox population 
density has been censored since 1973, and red fox numbers were severely 
reduced by an outbreak of sarcoptic mange 1983-1989 (Lindström et al., 
1994). The study area was gradually re-colonized by lynx in the 1990’s after 
more than 30 years of absence and the first lynx litter in the study area was 
recorded in 1996 (Liberg & Andrén, 2006). Besides red fox and lynx, 
wolves are severe predators on roe deer, but with unknown impact on roe 
deer fawns.  

The Bogesund Area is located just north of central Stockholm in the 
hemiboreal zone (59°24´N, 18°12´E). The area is 24 km² and is covered by 
65% forest, 25% farmland and the remaining 10% consists of a lake, bogs 
and bedrock. The dominating tree species are Norway spruce and Scots 
pine. Common deciduous tree species are aspen, alder (Alnus glutinosa), ash 
(Fraxinus excelsior), birch and oak (Quercus robur). The roe deer research 
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project on Bogesund started in 1988. Because of experimental manipulation 
(Kjellander, 2000) the roe deer density has varied greatly between 7.4 -36.1 
deer per km². Red fox is the only important fawn predator present at 
Bogesund, although varying in density because of sarcoptic mange 
(Lindström & Mörner, 1985). Lynx has visited the area only on rare 
occasions and is not believed to be important for the dynamics of the local 
roe deer population.    

2.2 Roe deer data 

Fawn per doe ratios in autumn (September–November) has been recorded 
since 1977. Personnel at Grimsö Wildlife Research Area reported 
observations of female roe deer with, or without, fawns as observed by 
chance while hunting, conducting field work or moving by car on the 
research area. Observations were noted on a map and summarized weekly. 

Adult roe deer and fawns older than 5 months were caught in box traps 
and fitted with VHF radio transmitter collars (500 g, 5 years maximum 
battery life, Televilt international, Followit, Sweden) at both Grimsö 
Wildlife Research Area and Bogesund. All animals were sexed, weighed and 
aged at marking. All animals were individually marked with different 
colored ear marks. For adults that were caught for the first time, age was 
approximated from tooth wear (Cederlund et al., 1991). 

Neonate roe deer fawns were captured by hand and fitted with VHF 
transmitters (Televilt TXH-2) with expanding collars, from May 15 to June 
30 during six years (2000-2005) on Grimsö Wildlife Research Area and 
during seven years (1997-2003) on Bogesund. Most transmitters had a 
mortality function, but transmitters indicating activity as well as transmitters 
without special functions were also used in the first two years of the study. 
Fawns were either caught when radio collared does were stalked or by 
chance as they were spotted accompanying the doe in open habitats within 
the research areas. Fawns were weighed to the nearest 0.1 kg, and sexed at 
marking. 

Fawns were radio-tracked daily up to an age of 8 weeks, which reflects 
the period when roe deer fawns are exposed to predation from red fox 
(Jarnemo et al., 2004). As fawns reached 8 weeks of age they were 
monitored once or twice a week until the study period ended 180 days after 
birth. When a dead fawn was found, the radio-collar was examined for bite 
marks, and the carcass was flayed and examined for bite marks and/or 
scratch marks, as well as predator specific feeding patterns determining cause 
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of death. The surroundings were checked for footprints and scats from 
predators. 

Birth date of fawns was estimated from behavioral data at marking 
(Jullien et al., 1992), and data on body mass at marking, assuming a daily 
growth rate of 0.15 kg and a birth weight of 1.5 kg (Linnell, 1994). The 
arithmetic mean of the two was used to estimate birth date. In some cases, a 
fawn was only possible to age using a single ageing method. If siblings 
differed in estimated age, the mean of siblings’ estimated ages was used. 
Date of death equaled date of retrieval for the period with daily radio 
tracking. Death date for fawns found later in the study period was 
determined using mean date between last date when fawns were recorded 
to be alive and the date of retrieval. Fawn mortality was estimated by 
Kaplan-Meier method (Pollock et al., 1989), for the first 180 days of age on 
the pooled data from all years. Although fawns were born on different dates 
and in different years, estimated birth-date was set as day 1 for all fawns in 
survival calculations. Pellet group count has been carried out since 1977, 
using a defecation rate of 22 pellet groups per day (Neff, 1968; Mitchell et 
al. 1985). 
 

2.3 Density Estimates of Red Fox and Voles 

The number of breeding fox vixens was determined by census of all known 
den sites (N=201) within the Grimsö Wildlife Research Area in early July 
each year 1973-2005. Presence of a vixen with dependent cubs was 
indicated by cub scats and remains of prey items. Number of fox litters 
within the research area ranged between 0 and 11 during this period. This 
index was used as an estimation of population density in voles each year. At 
Bogesund a red fox abundance index was estimated as the number of red 
fox observed divided by the number of person-days in field during May, 
June and July.  

A vole index was estimated at Grimsö Wildlife Research Area by yearly 
spring snap trapping. In total, about 950 snap traps were distributed 
systematically on Grimsö Wildlife Research Area in 20 sample areas (1 ha), 
with about 50 traps in each area and 10 traps at each trapping plot (3,14 
m2), and set out for three nights every year. The number of trapping plots 
varied slightly between areas because some areas contained lakes. Trapping 
plots were chosen within the sample areas as the best spots available for vole 
catching, e.g. close to a rock or a tree stump, and were not necessarily 
situated at exactly the same place every year. The bait used was a 
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combination of dried fruit and ‘Polish wicks’, i.e. pieces of woolen yarn 
dipped in vegetable oil. 
 

2.4 Supplemental feeding of red fox vixens 

For the purposes of study (V) Grimsö Wildlife Research Area was divided 
into a northern and a southern part of about the same size (65 km²) to 
mimic a large hunting area. The northern and southern area was used as 
study area in two consecutive years (2004-2005). No den sites were visited 
before the study took place to determine whether it contained a fox litter or 
not, because red fox vixens are likely to abandon their den site when 
disturbed. Therefore we established feeding plots close to den sites where 
there were most likely that a fox litter would be born based on their 
popularities as den sites in previous years. Five feeding plots were used in 
the northern part (2004) and six in the southern part (2005).  

Meat from pig (Sus scrofa domesticus), moose and roe deer was placed on 
sand-beds (about 1 m²) for detection of red foxes’ and other scavengers’ 
tracks. We placed out a ‘large amount’ of meat (roughly 20 kg per feeding 
plot and week) so that over-abundance of food would be secured if foxes 
regularly visited the feeding plots or if other scavengers competed for the 
meat. To avoid a numerical response in red foxes, e.g. an increase in 
number of fox territories or increased litter size, we kept the period of 
feeding as short as possible. In 2005 feeding started earlier in order to 
further assure high fox use of feeding plots at birth of roe deer fawns.  

The feeding started May 5 (2004) and April 15 (2005), and ended June 
24 (2004) and June 23 (2005). Feeding plots were visited twice weekly and 
the percentage of meat consumed from last visit was then estimated and 
replaced. When fox tracks or scats were found on the sand bed, as well as 
when the sand smelled of fox urine, we concluded that foxes had visited the 
feeding plots and carried away and consumed the missing food. If tracks 
were erased by rainfall, but bones were missing we concluded that foxes had 
visited the plots.  
 

2.5 Statistical Methods 

In paper I, I used stepwise multiple regression models to analyze effects of 
cyclic voles and red fox in accordance with the alternative prey hypothesis 
on roe deer fawn survival, but in paper II-V, I used general linear models 
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models built on the R platform (R version 2.3.0 – 2.10.0, R development 
core team 2006 - 2009) to investigate effects of lynx predation, distance to 
fox dens, and supplemental feeding of red fox on fawn survival, as well as to 
detect a trade-off between mothers’ nutrition and fawn survival.  
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3 Results and Discussion 

3.1 Roe deer fawns and the Alternative Prey Hypothesis (I) 

Roe deer fawns were found to act as an alternative food source for red fox 
in years of low vole population density in accordance with the alternative 
prey hypothesis (Hagen, 1952; Lack, 1954; Hörnfeldt, 1978; Angelstam et 
al., 1984; 1985; Small et al., 1993; I).  

In paper (I) a negative relationship between red fox litters in spring and 
ratio of roe deer fawns per doe observed in autumn in the following year 
(i.e. with a time lag of a year and a half) was found (Figure 1.). This 
relationship was most evident in years of low vole numbers. Red fox 
followed the vole cycles without a time lag as predicted and previously 
observed on Grimsö Wildlife Research Area (Hörnfeldt, 1978; Angelstam et 
al., 1984; 1985). The time lag of the relation between high recruitment in 
red fox and low number of observed fawns per doe was explained by vole 
population dynamics. If vole index was high, red fox responded numerically 
by increasing their reproductive output; more fox litters were born. In the 
next year there were many, now adult, foxes on the study area, and if this 
happened to be a year of low vole population density, these foxes had to 
turn to other food sources besides voles. In such years, predation on roe 
deer fawns became intense and resulted in a low fawn per doe quota in 
autumn.  
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Figure 1. The relationship between fawns per doe ratio and number of fox 
litters in the previous year. Fawns per doe ratios were corrected for the 
effects of vole density using the residual variation from the regression 
between fawn per doe ratio in autumn a year and a half later versus vole 
density, on the Grimsö Wildlife Research Area 1977–2000. 

 
The red foxes thus showed a functional response from their main prey, 
voles, to an alternative prey, roe deer fawns. This was interpreted as a 
support for the alternative prey hypothesis rather than the contesting shared 
prey hypothesis as no significant relationship was found between densities of 
predator and alternative prey in the same year. The fawn per doe ratio is a 
crude measure of roe deer recruitment but it is strongly related to the 
number of fawns per radio marked roe deer doe (I). Snow depth in the 
previous winter was found to affect number of fox litters negatively, 
probably by lowered condition in vixens, but no effects of severe winters 
was found on roe deer recruitment, even though an earlier study indicated 
delayed first reproduction in roe deer does (Lindström et al., 1994). 
Sarcoptic mange could explain a substantial part of the variation in roe deer 
recruitment by effectively lowering red fox recruitment between 1983 and 
1989.  
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This study also revealed lowered amplitude in vole cycles from 1990 and 
onwards, that possibly might result from milder winters (Figure 2.). Vole 
population density is negatively affected by thin snow cover possibly due to 
greater predation pressure (Lindström & Hörnfeldt, 1994). This 
phenomenon is not restricted to South-central Sweden or to Scandinavia 
but seems to be a circumpolar experience (Kokorev & Kuksov, 2002; 
Hörnfeldt et al., 2005; Kausrud et al., 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Fluctuations in roe deer fawns per doe in autumn, number of red 
fox litters, vole index, and summed value of snow depth 1973–2000, on the 
Grimsö Wildlife Research Area. Years of a sarcoptic mange outbreak are 
shaded. Note the low vole numbers after 1990. 
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3.2 Roe deer fawns, dwindling vole cycles and lynx predation (II) 

If there is a general lack of vole peaks as noted in paper I, this might 
strongly affect the observed pattern in the relations between red foxes, voles 
and roe deer fawns. Another, possibly confounding, factor that needed 
investigation was the predation impact of re-colonizing Eurasian lynx. Roe 
deer is the main prey for lynx wherever they co-occur (Nilsen et al.,  
2009a), and we suspected lynx to be a previously neglected predator on roe 
deer neonates, especially as lynx show no preference for any other age class 
of roe deer (Nilsen et al.,  2009b).  

Therefore, in order to get a better estimate on roe deer fawn mortality 
and its causes, 101 fawns were caught and fitted with radio collars in 2000-
2005 on Grimsö Wildlife Research Area. Total predator caused fawn 
mortality in boreal forest was 28% in this study (II). Red fox predation 
caused 16% mortality and Eurasian lynx 13%. Red fox predation was low in 
this study as compared to other studies from more agriculturally dominated 
areas (42%, Jarnemo et al., 2004; 25%, Panzacchi et al., 2008), but lynx 
predation on roe deer neonates was surprisingly high. When modeled, fate 
of fawns (i.e. killed by predator or survived until the age of six months) was 
mainly determined by physical condition of the fawn (as expressed by 
residuals from age at capture and body mass at capture). The vole 
population density index was no longer an important determinant for roe 
deer fawn survival as in paper (I).  

We believe this is partly because of the observed low vole cycle 
amplitude and partly because of the return of the Eurasian lynx as a major 
predator on roe deer fawns. The importance of roe deer fawn physical 
condition for predation related mortality can largely be explained by the 
restraints of red fox as a predator. Red fox rarely kill fawns with an age 
exceeding 58 days (Jarnemo et al., 2004) or a body mass exceeding six kg. 
Therefore, a fawn that is caught and collared at an age close to 58 days or a 
fawn that is heavy for its age will have a survival advantage in the study, as 
compared to those fawns that are caught when very young or small for their 
age. Thus, large fawns or fawns in good physical condition will experience a 
shorter time exposed to red fox predation in our study. Spatial separation in 
predation from red fox and lynx is presented in Figure 3.  

 
 
 
 



 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3. Temporal separation in predation pattern of lynx (black line) 
and red fox (grey line) during the first 6 months in life of roe deer fawns 
within Grimsö Wildlife Research Area 2000-2005.  

 
Eurasian lynx predation was thus revealed as a major cause of mortality for 
neonate roe deer fawns in boreal Sweden. The magnitude of lynx predation 
makes lynx equally important for roe deer recruitment as red fox predation. 
It has been argued that the re-colonization of Eurasian lynx may prove 
beneficial for roe deer populations of boreal Sweden as lynxes also kill foxes 
through intra-guild predation (Helldin et al., 2006), but this proposal is built 
on the assumption that very few roe deer fawns are killed by Eurasian lynx. 
The combined predation pressure of red fox and Eurasian lynx (28%) on 
roe deer fawns in boreal forest more or less equals the predation pressure by 
red fox alone in some studies from agricultural areas (Panzacchi et al., 2008), 
but the lynx will continue to kill roe deer of all other age classes as well, so 
lynx will pose a potential threat to individual roe deer from birth to old age, 
and thereby have a strong restraining effect on roe deer population growth 
in boreal forest.  
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3.3 Roe deer fawns’ landscape of risk (III) 

Spatial coincidence shapes species interactions in many different ways (Lewis 
and Murray, 1993; Schauber, 2000; Schmidt et al., 2001; Schmidt & 
Ostfeld, 2003). One of the best ways for an individual to avoid death by 
predation is to occupy a home range without any predators, but such areas 
are hard to find.  

Central place foraging predators may be restricted by the distance they 
are willing to carry a large prey back to the central place (Stevens & Krebs 
1986) and the optimal foraging theory (Schoener, 1979) states that single 
prey loaders should minimize energy losses by bringing larger prey to the 
den while consuming smaller prey on the spot. Because of this, Skogland 
(1991) suggested that den-bound, territorial predators have limited ability to 
limit ungulate populations.  

Furthermore, predators in areas that are fully occupied (i.e. where 
predators have adjacent home ranges) may avoid intense usage of the parts 
of their home range that is close to home range boundaries in order to 
minimize risk of hostile encounters with neighbors (Lewis & Murray, 
1993). This behavior can create boundary zones of low predator activity, in 
which prey may seek refuge (Hoskinson & Mech, 1976; Mech, 1977; Lewis 
& Murray 1993).  

In order to find out whether or not there are any such refuges for roe 
deer fawns in the boreal forest we used 27 years of data from Grimsö 
Wildlife Research Area on observations of roe deer does with or without 
fawns, and yearly locations of red fox dens. Other variables were week of 
observation, vole density index, accumulated snow depth, years with and 
without presence of lynx and roe deer density. Average recruitment for all 
observations during the whole study period was 0.86 ± S.E. 0.022 fawns 
per doe (n = 1724).  

The best model to explain the variation in number of fawns per doe 
included the variables: week of observation, mean distance to all inhabited 
fox dens, fox density index in the previous year, fox density index in the 
same year, vole density index and roe deer density index (IV). There were 
no significant interactions between fox index in the previous year or fox 
density in the current year and roe deer density. In the best model number 
of fawns per doe increased with mean distance to the closest den and vole 
density, whereas fawns per doe decreased with fox density index in the 
previous year, fox density index, and roe deer density index.  

To illustrate the “landscape of risk” for roe deer fawns we constructed a 
variable “predation risk” by using the Kernel function in Hawths analysis 
tools of ArcGis on inhabited red fox dens (Figure 4.).  
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Figure 2. A representation of the landscape of risk for red fox predation 

on roe deer fawns during two contrasting years using a distance- and 
density- based measure of risk of red fox predation based on a kernel of fox 
dens with smoother 16,000. In 1989 (left) only two fox litters (stars) were 
born on Grimsö Wildlife Research Area (black outline), both in the south 
western corner of the study area, and in 1992 (right) 10 litters were born, 
scattered over the entire study area. White dots are observations of roe deer 
does during the focal year. Risk values are continuously decreasing from a 
den, but for illustrational purposes they are divided into intervals with units 
of 0.0002 in this figure. Note that effects of dens outside the study area are 
unknown.  

 
From the resulting maps we measured an increased risk on roe deer does 

with fawns up to at least 10 km from an active red fox den. We present in 
this study the first ever attempt to picture the ‘landscape of risk’ for neonate 
roe deer fawns in relation to red fox predation.  

The emerging picture is grim, as red fox predation risk covers most of 
the landscape. In addition, fox dens with litters outside the study area will 
affect roe deer does with a home range near borders of the study area. This 
study showed a positive effect of increasing mean distances to fox dens on 
number of roe deer fawns per doe along with the expected negative effects 
of red fox density with a time lag as well as red fox density in the same year 
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and positive effects of vole density in the same year (Kjellander & 
Nordström, 2003). However, the most interesting result is the very weak 
contrast in spatial risk relative to distance to fox dens with litters even in 
years when only two dens were active.  

We did not find any evidence for the hypothesis by Skogland (1991) that 
den bound predators are restricted to hunting close by the den. Conversely, 
results imply that red fox vixens with dependent cubs are willing to roam 
very far from the den in order to hunt roe deer fawns. This result was also 
implied in paper (V) where red fox vixens brought supplemental food to 
the den from feeding plots up to 8 kilometers away. The number of fawns 
per female increased moderately, but significantly from fox den and 
outwards for several kilometers. This might also be an effect of other foxes 
hunting, for example resident males or “floaters” (i.e. non-resident foxes). 
There is however no doubt that red fox are, or have been, an important 
factor for roe deer survival as annual variation in the number of fox litters in 
previous year correlates well with number of fawns per doe (I). The weak 
effect of distance does not occur because fawns are not killed by red foxes 
(II), but more likely either red fox vixens have much larger foraging areas 
around their dens than expected or non-territorial foxes play a larger role 
for predation of roe deer fawns than assumed (Lindström, 1994). The spatial 
scale of our study area (130 km²) was not large enough to exactly find the 
scale of impact, and we do not have full overview of dens outside of this 
area. Patches of land at the outskirts of the study area, now characterized as 
of being of low risk are most likely influenced by the presence of red fox 
dens outside the study area, assuming that fox density is equal inside and 
outside the study area. This makes the chance of there being areas of refuge 
for roe deer fawns even more unlikely. Roe deer density had a negative 
effect on number of fawns observed per doe in autumn. This is in 
accordance with the observed density dependence in roe deer reproduction 
reported by Hewison et al. (1996) and Kjellander (2000). The effects of 
presence of lynx was not included in the best model, and this is somewhat 
surprising as lynx are known to kill about 12.5 % of a marked roe deer fawn 
population yearly at Grimsö Wildlife Research Area (II), but this effect was 
probably overridden by the effects of fox predation. Distance to the closest 
den was not included in the best model and this is possibly because of the 
generally weak and far reaching effects of fox dens in general.  

Even if our result of weak, far reaching effects of fox dens depends on all 
parts of territories being used for hunting by red fox vixens or that the 
hunting along red fox territory boundaries is partially carried out by red fox 
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“floaters” or resident fox males, the fact remain, there are no refuges for roe 
deer fawns in the boreal forest. 

3.4 The quality of mothers’ home ranges and roe deer fawn 
survival (IV) 

Maternal qualities may also affect offspring survival. Physical condition, age, 
experience, dominance rank, habitat choice and anti-predatory behavior are 
traits of a mother that is known to affect juvenile survival in different ways 
(Ozoga & Verme, 1986; Smith, 1987; Mech & McRoberts, 1990; Nixon & 
Etter, 1995; Byers, 1997; Nielsen et al., 2004). In order to maximize their 
lifetime reproductive success females must balance their investment in their 
current offspring against investment in their own survival and their future 
reproduction (Stearns, 1997; Kjellander et al. 2004). This is referred to as a 
trade-off. In paper (III) we report on findings of such a female trade-off in 
roe deer does between good forage habitat and the predation risk for 
neonate roe deer fawns.  

We investigated the relationships between predation risk of roe deer 
fawns and mothers’ age, red fox density index and the size and habitat 
composition of the mothers’ home range. In 1997-2004, 152 roe deer 
fawns were caught by hand and fitted with expanding VHF radio collars on 
the Bogesund study area. Seven of these fawns were not included in the 
study because of capture induced deaths, disappearance, and failed 
transmitters. The most common cause of mortality for red fox fawns in this 
study was red fox predation (88% of all deaths, other causes were hay 
mowing machines, starvation, hypothermia and disease) and in total 48% of 
the fawns died before the age of nine weeks. These results were similar to 
the generally observed pattern for northern temperate ungulates (Linnell et 
al., 1995) and to previous Scandinavian roe deer studies. Predators, when 
present, cause the majority of neonatal deaths in roe deer (Aanes & 
Andersen, 1996; Jarnemo et al., 2004; Jarnemo & Liberg, 2005, II). 

In total, 94 adult roe deer does were followed for 277 reproductive 
events during the study period (1997-2004), and 46 of these does were of 
known age and with a determined home range, representing 109 
reproductive events of known result. We found a strong positive correlation 
between mean yearly predation rate and fox index and between daily 
predation rate and a fox density index. We also found a significant positive 
correlation between female total home range size and area open habitat in 
does’ home ranges with 10.0% of the variation in the area open habitat 
explained by total home range size. Furthermore, when we investigated the 
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combined effect of proportion open habitat in does’ home ranges and fox 
density on the probability of females having one or more fawns, we found a 
significant negative effect of the interaction between the two variables “fox 
density” and “proportion open habitat”, on the number of females with one 
or more fawns surviving the summer. A high predation risk in open habitats 
appears to be a common pattern in hider ungulate species (Beale & Smith, 
1973; Carroll & Brown, 1977; Barret, 1981; Nelson & Woolf, 1987; Canon 
& Bryant, 1997) that have also been observed in roe deer (Aanes & 
Andersen, 1996; Panzacchi et al., 2008). One reason for high predation rates 
in open habitats may be predators’ opportunity to use the mothers as visual 
cues for locating neonates (Byers & Byers, 1983; FitzGibbon, 1993; 
Thompson, 1996). A patchy distribution of bed site cover in open habitat 
areas might also increase predation risk for hiding neonates compared to 
habitats where cover is more homogeneous (Beale & Smith, 1973; 
Autenrieth, 1980; Singer et al., 1997). When facing risk of predation, 
animals have to balance food intake in rich, but risky habitats, against safety 
in a poorer habitat (McNamara & Houston, 1987; Lima & Dill, 1990). This 
evaluation of the landscape has been termed “the landscape of fear”, defined 
as the spatial mapping of the predation cost of foraging (Laundré et al. 2001; 
Brown & Kotler, 2004).  

Does that had a large proportion of open habitats in their home range 
had fewer surviving fawns in September than more forest-dwelling 
individuals in years of both high and low fox abundance, but if foxes had 
been lacking the outcome would have been quite the opposite (Figur 4). 

 Our study supports the suggestion by Aanes & Andersen (1996), that 
roe deer does who make use of open habitats get access to other valuable 
resources which may balance lower survival in neonates during summer.  

The gains for roe deer females choosing these open risky habitats might 
not only be better survival of their fawns in years with low predation 
pressure, but also higher quality of surviving fawns and possibly, higher 
survival for themselves. We thus suggest that there is a trade-off between 
the gains and risks of using open habitats in roe deer does, and predict that 
the lifetime outcome of this high risk - high gain strategy might be as good 
as or possibly even better than that of choosing safer but poorer habitats. 
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Figure 4. Probability for a female to have ≥1 fawn in September under 
three different fox densities as predicted from fox index and proportion 
open habitat in home range. The predicted values were calculated from a 
logistic regression model with data from Bogesund, Sweden, 1997-2003. 
No fox (black triangles) represents a model where fox index was set to 0, 
low fox (black circles) model includes the lowest observed fox index (0.1), 
whereas high fox (black squares) model includes the highest observed fox 
index (0.29). 

3.5 Roe deer fawn survival and additional feeding of red foxes 
(V) 

As we have seen red fox is considered a major predator of roe deer fawns (I; 
II) and red fox vixens with cubs are considered the largest threat to roe deer 
juveniles. The effects of red fox vixens’ predation are reaching far from the 
dens, and there are simply put no refuges from red fox predation for roe 
deer fawns (IV). What then, are to be done by managers to minimize red 
fox predation on roe deer fawns? The simplest answer to this question is 
large scale culling of red fox vixens with dependant cubs, but this is not 
allowed in Sweden under current legislation.  

We provided red fox vixens on Grimsö Wildlife Research Area 
additional food as close to active den sites as possible. The fox den survey 
revealed that 4 red fox litters were born at the research area in 2004 and 
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that 6 litters were born in 2005. Distances from fox dens with litters to 
feeding plots were on average 8433 m (990-12060 m) in 2004 and 5751 m 
(1056-6644 m) in 2005. The reasons for the relatively long mean distances 
between fox dens and feeding plots is explained by the way we designed the 
study. No fox den sites could be visited in advance as vixens are known to 
abandon den sites when disturbed by human presence, why feeding plots 
were placed out based on the most popular denning sites during the 
previous five years and the most used denning sites since 1973.  

In 2004 bones or other remains from feeding plots were later found in 
one of the dens with litters in the northern area of supplemental feeding 
(distance between den and closest feeding plot 8321 meters) and in 2005 in 
two inhabited dens in the southern area of supplemental feeding (distances 
between dens and closest feeding plots 2111 and 1477 meters respectively). 
Red foxes visited all of the feeding sites frequently. We found no tracks or 
scats of wolves, lynx or wild boar at or near a feeding site.  

Use of the additional food (percentage food removed) increased sharply 
at the beginning of feeding and reached a threshold level before or very 
early in the critical fawning period for roe deer. There was no relationship 
between number of fox visits and distance between fox dens and feeding 
plots and no overall difference in fawn per doe ratio among years during the 
study period. Supplemental feeding did not increase the fawn per doe ratio 
in autumn significantly when comparing years with supplemental feeding to 
years without supplemental feeding. 

The best general linear model was the one containing year only and the 
second best model to explain variation in fawn per doe included distance 
between observed doe and feeding plot, and year. None of these models 
had a statistically significant effect on the number of fawns per doe and R2 
values were very low for all models.  

It is always hard to establish negative results like these because they tend 
to depend on sample size which was marginal in our case. The measure of 
roe deer fawn survival may also be questioned because the best way to 
measure mortality in roe deer fawns is to monitor radio marked fawns 
directly. However, we failed to obtain sufficient sample sizes from radio 
marked fawns during these years. Fawn per doe ratio as recruitment 
measure cannot distinguish between fawn losses due to predation by other 
predators and fawn losses due to predation by red foxes, and as re-
established lynx kill 12.5 % of radio marked roe deer fawns in our study 
area (II), this may partly mask effects of supplemental feeding of red fox.    

Voles are supposedly main prey for red foxes at the study area and 
fluctuations in vole population density may influence fox predation on roe 
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deer fawns (Lindström, 1982; Kjellander & Nordström, 2003), but in spite 
of the fact that population density of voles was low in 2004 (0.25 voles 
/100 trap nights) and high in 2005 (1.51 voles / 100 trap nights), there was 
no significant differences in fawn per doe ratio between the two years. This 
result may be interpreted as a support for effects of supplemental feeding, as 
differences in predation pressure on roe deer fawns between years of high 
and low vole population densities might have been leveled out by 
supplemental feeding, but mean fawn per doe ratio was actually lower in 
2005 (0.85 fawns per doe), than in 2004 (1.47 fawns per doe), indicating a 
negative relationship between vole density and number of fawns per doe.  

However, this is the actual situation that management is facing, so our 
main result that additional feeding of red fox during the roe deer fawning 
season do not increase overall roe deer recruitment is likely valid in the 
current multi-predator situation of boreal Sweden. The low density of roe 
deer in the area makes it possible that red fox is not actively searching for 
roe deer fawns because it is a fairly rare prey item. Red fox predation on 
fawns at the Grimsö Wildlife Research Area amounts to about 17 % of 
radio marked fawns (II) which is much lower than compared to that 
reported from more agricultural areas (Aanes & Andersen, 1996 (50%); 
Jarnemo & Liberg, 2005 (42 %)) where foxes also can act as roe deer fawn 
specialists during early summer (Panzacchi et al., 2008).  

This low predation rate within Grimsö Wildlife Research Area is most 
likely related to low population densities of both red fox and roe deer, as 
well as landscape structure. This situation is likely to be representative for 
large parts of the boreal forest in Scandinavia. For this reason we suggest 
that red fox predation on roe deer fawns in boreal forest might be purely 
incidental (Vickery et al., 1992) in which case predation may occur, at a low 
level, even if red fox is provided with supplemental food.  

Nevertheless, the negative result holds only for the scale we choose as 
relevant and for the level of red fox predation common to our area. Thus, 
results from this study clearly suggest that supplemental feeding of red foxes 
will most likely not be a solution to this management issue or an alternative 
to predator removal. However, in agriculturally dominated areas where roe 
deer density and red fox predation rates are higher, and where foxes may act 
as specialist predators on roe deer fawns (Panzacchi et al., 2008) we cannot 
exclude that supplementary feeding may increase roe deer recruitment, 
especially if lynx predation is low. 
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4 Future perspectives 

By revealing the past it is almost impossible to avoid predicting the future as 
we, most probably, already are beginning to see the consequences of a 
major change in the basis for boreal species dynamics; the climate. If vole 
dynamics in South-central Sweden are affected by milder winters then it is 
here that we see the effects first of what is to come later further north. The 
disruption of fully functioning predator-prey systems may have detrimental 
consequences that are hard to predict in the long run. Generalist predators 
like the red fox can always manage by prey switching if vole population 
lows become permanent, but all predators are not that plastic in their 
nutritional needs and behavioral traits. Specialists like certain owls, weasels 
and stouts may suffer hard from constant lows in the vole cycles making 
their population densities lower and making them more vulnerable to local 
extinction and other stochastic events. Will the northern system be replaced 
by the southern or will we see the emergence of totally new dynamics in 
the boreal forest? Will indeed the boreal biome survive at all with rising 
temperatures and less snow cover? Future research should, in my opinion, 
focus on finding the mechanisms that link global warming to population 
dynamics.  

The roe deer population development in Sweden has been a true success 
story during the 20th century, but now the trend has turned. Local roe deer 
population densities in Sweden will most likely become even more 
depressed from predation by red fox, lynx and wolves in the future as lynx 
and wolves continue to spread further south. On the other hand climate 
change in the form of global warming will probably make winters warmer 
and that will be beneficial for survival. Another species re-introduced and 
re-colonizing Sweden is the wild boar. This species is now spreading at 
tremendous speed all over the country. How this will affect roe deer is yet 
unknown, but future studies should be focusing on direct or indirect 
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competition effects between the species. Roe deer is not only a species 
important for predators, but is widely recognized as one of Sweden’s most 
important game species. Nevertheless, managers in general have not seen 
roe deer as a species important to manage, because of its abundance. In 
these days of decreasing population densities and dwindling hunting bags it 
might be about time to start managing roe deer more actively. Perhaps it is 
time to develop new and updated harvest models including different 
scenarios with and without snow, with lynx but no wolf, no lynx but with 
wolf, with both lynx and wolf etcetera. For this purpose we should use 
robust models based on simple density estimates or proxies for density and 
bag size and all the other parameters needed. Long term studies and applied 
experimental approaches to roe deer research will be necessary to provide 
proxies and evaluate management strategies.  
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